forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutility_ops_test.cc
45 lines (39 loc) · 1.19 KB
/
utility_ops_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include <iostream>
#include "caffe2/core/flags.h"
#include "caffe2/operators/utility_ops.h"
#include <gtest/gtest.h>
C10_DECLARE_string(caffe_test_root);
namespace caffe2 {
static void AddConstInput(
const vector<int64_t>& shape,
const float value,
const string& name,
Workspace* ws) {
DeviceOption option;
CPUContext context(option);
Blob* blob = ws->CreateBlob(name);
auto* tensor = BlobGetMutableTensor(blob, CPU);
tensor->Resize(shape);
math::Set<float, CPUContext>(
tensor->numel(), value, tensor->template mutable_data<float>(), &context);
return;
}
TEST(UtilityOpTest, testReshapeWithScalar) {
Workspace ws;
OperatorDef def;
def.set_name("test_reshape");
def.set_type("Reshape");
def.add_input("X");
def.add_output("XNew");
def.add_output("OldShape");
def.add_arg()->CopyFrom(MakeArgument("shape", vector<int64_t>{1}));
AddConstInput(vector<int64_t>(), 3.14, "X", &ws);
// execute the op
unique_ptr<OperatorBase> op(CreateOperator(def, &ws));
EXPECT_TRUE(op->Run());
Blob* XNew = ws.GetBlob("XNew");
const TensorCPU& XNewTensor = XNew->Get<Tensor>();
EXPECT_EQ(1, XNewTensor.dim());
EXPECT_EQ(1, XNewTensor.numel());
}
} // namespace caffe2