-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path5_reductive-groups.tex
329 lines (279 loc) · 14.4 KB
/
5_reductive-groups.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
% !TEX root = 6490.tex
\section{Reductive groups}
Let $k$ be an algebraically closed field of characteristic zero. Let
$G_{/k}$ be a reductive group, i.e.~$\urad G=1$. A good example is $\GL(n)$.
We could like to determine $G$ up to isomorphism via some combinatorial data.
Let $T\subset G$ be a maximal torus. Better, let $G_{/k}$ be a split reductive
group and $k$ arbitrary of characteristic zero. Let $X=\characters^\ast(T)$.
We have the adjoint representation $\adjoint:G\to \GL(\fg)$. Just as before, we
can write
\[
\fg = \fg_0\oplus \bigoplus_{\alpha\in R} \fg_\alpha ,
\]
where $\fg_\alpha=\{x\in \fg:t x=\alpha(t) x\text{ for all }t\}$ and
$R=\{\alpha\in X\smallsetminus 0:\fg_\alpha\ne 0\}$.
Note that $R\subset X_\dR$ need not be a root system, since $R$ may only span a
proper subspace of $X_\dR$. For example, if $G$ is itself a torus, then
$R=\varnothing$. However, $R\subset V\subset X_\dR$, where $V=\dR\cdot R$, is a
root system, and it determines the semisimple group $G/\rad G$ up to isogeny.
The datum ``$R\subset X$'' is not in general enough to determine $G$.
Let $\characters_\ast(T)=\hom(\Gm,T)$. There is a perfect pairing (composition)
$\characters^\ast(T)\times \characters_\ast(T)\to \dZ=\hom(\Gm,\Gm)$. Here
$\langle \alpha,\beta\rangle$ is the integer $n$ such that
$\alpha\circ\beta$ is $(-)^n$. From $G$ we'll construct a root datum, which
will be an ordered quadruple
$(\characters^\ast(T),\roots(G,T),\characters_\ast(T),\check\roots(G,T))$.
Before doing this, we'll define root data in general.
\subsection{Root data}\label{sec:root-data}
The following definitions are from \cite[XXI]{sga3-iii}. A \emph{dual pair}
is an ordered pair $(X,\check X)$, where $X$ and $\check X$ are finitely
generated free abelian groups, together with a pairing
$\langle\cdot,\cdot\rangle:X\times \check X\to \dZ$ that induces an isomorphism
$\check X\simeq X^\vee=\hom(X,\dZ)$. Let $(X,\check X)$ be a dual pair, and
suppose we have two elements $\alpha\in X$, $\check\alpha\in \check X$. Define
the \emph{reflections} $s_\alpha$ and $s_{\check\alpha}$ by
\begin{align*}
s_\alpha(x) &= x-\langle x,\check\alpha\rangle\alpha \\
s_{\check\alpha}(x) &= x-\langle\alpha,x\rangle\check\alpha .
\end{align*}
\begin{definition}
A \emph{root datum} consists of an ordered quadruple $(X,R,\check X,\check R)$,
such that
\begin{itemize}
\item $(X,\check X)$ is a dual pair.
\item $R\subset X$ and $\check R\subset \check X$ are finite sets,
\item There is a specified mapping $\alpha\mapsto \check\alpha$ from $R$ to
$\check R$.
\end{itemize}
These data are required to satisfy the following conditions:
\begin{enumerate}
\item For each $\alpha\in R$, $\langle\alpha,\check\alpha\rangle=2$.
\item For each $\alpha\in R$, $s_\alpha(R)\subset R$ and
$s_{\check\alpha}(\check R)\subset \check R$.
\end{enumerate}
\end{definition}
It turns out that $\alpha\mapsto \check\alpha$ is a bijection, and that
$R$ and $\check R$ are closed under negation. If $\sR=(X,R,\check X,\check R)$
is a root datum, the \emph{Weyl group} of $\sR$ is the group
$\weyl(\sR)\subset \GL(X)$ generated by $\{s_\alpha:\alpha\in R\}$. By
\cite[XXI 1.2.8]{sga3-iii}, the Weyl group of a root datum is finite.
\begin{definition}
Let $\sR_1=(X_1,R_1,\check X_1,\check R_1)$ and
$\sR_2=(X_2,R_2,\check X_2,\check R_2)$ be root data. A \emph{morphism}
$f:\sR_1\to \sR_2$ consists of a linear map $f:X_1\to X_2$ such that
\begin{enumerate}
\item $f$ induces a bijection $R_1\iso R_2$,
\item The dual map $f^\vee:\check X_2\to \check X_1$ induces a bijection
$\check R_2\iso \check R_1$.
\end{enumerate}
\end{definition}
\begin{definition}
Let $\sR=(X,R,\check X,\check R)$ be a root datum. We say $\sR$ is
\emph{reduced} if for any $\alpha\in R$, the only multiples of $\alpha$ in
$R$ are $\pm \alpha$.
\end{definition}
Just as with root systems, there is a notion of a base for root data. If
$N\subset \dQ$ and $S\subset X$, we write $N\cdot S$ for the subset of
$X_\dQ$ generated as a monoid by $\{n s:(n,s)\in N\times S\}$. We
call a root $\alpha\in R$ \emph{indivisible} if there does not exist any
$\beta\in R$ for which $\alpha= n \beta$ for some $n>1$,
i.e.~$\dQ^+\cdot\alpha\cap R=\{\alpha\}$.
\begin{definition}
Let $\sR=(X,R,\check X,\check R)$ be a root system. A subset $\Delta\subset R$
is a \emph{base} if it satisfies any of the following conditions (reproduced
from \cite[XXI 3.1.5]{sga3-iii}):
\begin{enumerate}
\item All $\alpha\in \Delta$ are indivisible, and
$R\subset \dQ^+\cdot\Delta\cup \dQ^-\cdot\Delta$.
\item The set $\Delta$ is linearly independent, and
$R\subset \dN\cdot \Delta\cup \dZ^-\cdot\Delta$.
\item Each $\alpha\in R$ can be written uniquely as
$\sum_{\beta\in R} m_\beta \beta$, where all $m_\beta\in \dZ$ and have the
same sign.
\end{enumerate}
\end{definition}
If $\Delta\subset R$ is a base, write $R^+=\dN\cdot \Delta$ for the set of
\emph{positive roots} and $R^-=\dZ^-\cdot\Delta$ for the set of \emph{negative
roots}. One has $R=R^+\sqcup R^-$, and $R^-=-R^+$.
Write $\rootdata$ for the category of root data. There is a contravariant
functor $\check\cdot:\rootdata\to \rootdata$ which sends a root datum
$\sR=(X,R,\check X,\check R)$ to $\check\sR=(\check X,\check R,X,R)$. This is
clearly an anti-equivalence of categories. We will use this later to define
the \emph{dual} of a split reductive group. If $G_{/k}$ is a split reductive
group, then $\check G$ will be a split reductive group scheme over $\dZ$, whose
root datum is $\sR(G,T)^\vee$.
We'll write $\rootdata^\mathrm{red}$ for the category of reduced root data.
\begin{example}
Let $R\subset V$ be a root system. As in \autoref{sec:semisimple-classify}, we
have lattices $Q(R)\subset V(R)\subset V$. Choose a $W$-invariant inner product
$\langle\cdot,\cdot\rangle$ on $V$. Given $Q\subset X\subset P$, we can
define a root datum as follows:
\begin{align*}
X &= X \\
R &= R \\
\check X &= \{v\in V:\langle \alpha,v\rangle\in \dZ\text{ for all }\alpha\in R\} \\
\check R &= \left\{\frac{2\alpha}{\langle \alpha,\alpha\rangle}:\alpha\in R\right\} .
\end{align*}
It is easy to check that this satisfies the required properties.
\end{example}
For a classification of ``reduced simply connected root systems,'' see
\cite[XXI 7.4.6]{sga3-iii}.
\subsection{Classification of reductive groups}
Let $k$ be a field of characteristic zero, $G_{/k}$ a (connected) split
reductive group. Let $T\subset G$ be a split maximal torus. The \emph{rank} of
$G$ is the integer $r=\rank(G)=\dim(T)$. Let $\fg=\lie(G)$. As we have seen
many times before, we can decompose $\fg$ as a representation of $T$:
\[
\fg=\ft\oplus \bigoplus_{\alpha\in R} \fg_\alpha ,
\]
where $\ft=\lie(T)$, $R=\roots(G,T)$ is the set of \emph{roots} of $G$, and
$\fg_\alpha$ is the $\alpha$-typical component of $\fg$. Recall that the
\emph{Weyl group} of $G$ is $\weyl(G,T)=\normalizer_G(T)/\centralizer_G(T)$. By
\cite[XII 2.1]{sga3-ii}, the Weyl group is finite.
A good source for what follows is \cite[II.1]{jantzen-2003}. Let
$\alpha:T\to \Gm$ be a root, and put $T_\alpha=(\ker\alpha)^\circ$; this is a
closed $(r-1)$-dimensional subgroup of $T$. Let
$G_\alpha=\centralizer_G(T_\alpha)$; by \autoref{thm:centralizer-reductive},
this is reductive. One has $\zentrum(G_\alpha)^\circ=T_\alpha$. From the
embedding $G_\alpha\monic G$, we get an embedding of Lie algebras
$\lie(G_\alpha)\monic \fg$. By \cite[IX 3.5]{sga3-iii}, one has
\[
\lie(G_\alpha) = \ft\oplus \fg_\alpha \oplus \fg_{-\alpha}
\]
and $\fg_\alpha,\fg_{-\alpha}$ are both one-dimensional. In classical Lie
theory, we could define $U_\alpha=\exp(\fg_\alpha)$. Since the exponential map
does not make sense in full generality, we need the following result. Recall
that we interpret the Lie algebra of an algebraic group as a new algebraic
group.
\begin{theorem}
Let $T$ act on $G$ via conjugation. Then there is a unique $T$-equivariant
closed immersion $u_\alpha:\fg_\alpha\monic G$ which is also a group
homomorphism.
\end{theorem}
\begin{proof}
This is \cite[XXII 1.1.i]{sga3-iii}.
\end{proof}
We let $U_\alpha$ be the image of $u_\alpha$. Since $\fg_\alpha$ is
one-dimensional, it is isomorphic to $\Ga$ as a group scheme. So we will
generally write $u_\alpha:\Ga\iso U_\alpha\subset G$. The fact that
$u_\alpha$ is $T$-equivariant comes down to:
\[
t u_\alpha(x) t^{-1} = u_\alpha(\alpha(t) x) \qquad t\in T, x\in \Ga .
\]
The group $G_\alpha$ is generated by $T$, $U_{\pm\alpha}$ by Lie
algebra considerations. So the group $G$ is generated by $T$ and
$\{U_\alpha:\alpha\in R\}$.
\begin{example}[type $\typeA_n$]
Inside $\SL(n+1)$, the maximal torus $T$ consists of diagonal matrices
$\diagonal(t)=\diagonal(t_1,\dots,t_{n+1})$ for which
$t_1\dotsm t_{n+1}=1$. The group $\characters^\ast(T)$ is generated by the
characters $\chi_i(\diagonal(t))=t_i$. The roots are
$\{\chi_i-\chi_j:i\ne j\}$. For such a root, one can verify that
$G_\alpha=\centralizer_G(T_\alpha)$ consists of matrices of the
form $(g_{a b})$ for which $g_{a b}=\delta_{a b}$ unless
$a=b=i$, $a=b=j$, or $(a,b)=(i,j)$. So $G_\alpha\simeq \SL(2)$.
It follows that $U_\alpha = 1+\Ga e_{i j}$. Note that indeed, $\SL(n+1)$ is
generated by $\{U_\alpha:\alpha\in R\}$ and $T$.
\end{example}
Back to our general setup $T\subset G_\alpha\subset G$. We can consider the
``small Weyl group'' $\weyl(G_\alpha,T)\subset \weyl(G,T)$. Since
$\rank(G_\alpha/\zentrum(G_\alpha)^\circ)=1$, we have
$\weyl(G_\alpha,T)=\dZ/2$. Let $s_\alpha$ be the unique generator of
$\weyl(G_\alpha,T)$. It is known that $W=\weyl(G,T)$ is generated by
$\{s_\alpha:\alpha\in R\}$. The group $W$ acts on $\characters^\ast(T)$.
Indeed, if $w\in W$, we have $w=\dot n$ for some $n\in \normalizer_G(T)$.
Define $(w\cdot\chi)(t)=\chi(\dot n^{-1} t \dot n)$.
Recall that $\characters_\ast(T)=\hom(\Gm,T)$. There is a natural pairing
$\characters^\ast(T)\times \characters_\ast(T)\to \dZ$, for which
$\langle \alpha,\beta\rangle$ is the unique $n$ such that $\alpha\beta$ is
$t\mapsto t^n$. That is, $\alpha(\beta(t)) = t^{\langle\alpha,\beta\rangle}$.
This pairing induces an isomorphism
$\characters_\ast(T)\simeq \characters^\ast(T)^\vee$.
\begin{theorem}
Let $\alpha\in R$. Then there exists a unique
$\check\alpha\in \characters_\ast(T)$ such that
$s_\alpha(x) = x-\langle x,\check\alpha\rangle\alpha$ for all
$x\in \characters^\ast(T)$. Moreover, $\langle\alpha,\check\alpha\rangle=2$.
\end{theorem}
\begin{proof}
This is \cite[XXII 1.1.ii]{sga3-iii}.
\end{proof}
Equivalently, $s_\alpha(\alpha)=-\alpha$. We put
$\check\roots(G,T)=\{\check\alpha:\alpha\in R\}$. The quadruple
\[
\sR(G,T) = (\characters^\ast(T),\roots(G,T),\characters_\ast(T),\check \roots(G,T))
\]
is the \emph{root datum} of $G$; it will determine $G$ up to isomorphism (not
just isogeny).
In defining coroots, we could also have used the fact that
$\zentrum(G_\alpha)^\circ=T_\alpha$, which implies
$T/T_\alpha\monic G_\alpha/T_\alpha$ is a maximal torus of dimension $1$. So
the group $G_\alpha/T_\alpha$ is semisimple, and has one-dimensional maximal
torus. Its Dynkin diagram has type $\typeA_1$, so $G_\alpha/T_\alpha$ is either
$\SL(2)$ or $\PGL(2)$.
\begin{definition}
Let $k$ be a field, $G_{/k}$ a split reductive group. A \emph{pinning} of $G$
consists of the following data:
\begin{enumerate}
\item A maximal torus $T\subset G$.
\item An isomorphism $T\iso \diag(M)$ for some free abelian group $M$.
\item A base $\Delta\subset \roots(G,T)$.
\item For each $\alpha\in \Delta$, a non-zero element
$X_\alpha\in \fg_\alpha$.
\end{enumerate}
\end{definition}
If $G_1,G_2$ are pinned reductive groups, a morphism $f:G_1\to G_2$ is said to
be \emph{compatible with the pinnings} if $f(T_1)=f(T_2)$, $f$ induces a
bijection (written $f_\ast$) $R_1\iso R_2$, and such that
\[
f(u_\alpha(X_{1,\alpha})) = u_{f_\ast\alpha}(X_{2,f_\ast\alpha}) .
\]
Let $\reductivegroups_{/k}^\mathrm{pinn}$ be the category of split reductive
groups over $k$ with pinnings. We can define a pinning of a root system
$\sR=(X,R,\check X,\check R)$ to be the choice of a base $\Delta\subset R$. Let
$\rootdata^\mathrm{red,pinn}$ be the category of pinned reduced root data. The
following combines the ``existence and uniqueness theorems'' in the
classification of reductive groups.
\begin{theorem}\label{thm:reductive-classification}
The operation $G\mapsto \sR(G,T)$ induces an equivalence of categories
\[
\reductivegroups_{/k}^\mathrm{pinn}\iso \rootdata^\mathrm{red,pinn} .
\]
\end{theorem}
\begin{proof}
See \cite[XXIII 4.1]{sga3-iii} for a proof that $\sR$ is fully faithful,
\cite[XXV 2]{sga3-iii} for a proof of essential surjectivity.
\end{proof}
\subsection{Chevalley-Demazure group schemes}
In \autoref{thm:reductive-classification}, we classified split reductive
groups over an arbitrary field. It turns out that the classification works over
an arbitrary (non-empty) base scheme. More precisely, let $S$ be a scheme,
$G_{/S}$ a smooth affine group scheme of finite type. We say $G$ is
\emph{reductive} if each geometric fiber $G_{\bar s}$ is reductive. A
\emph{maximal torus} in $G$ is a subgroup scheme $T\subset G$ of multiplicative
type such that for all $s\in S$, the geometric fiber
$T_{\bar s}\subset G_{\bar s}$ is a maximal torus. Suppose there exists an
abelian group $M$ with an embedding $\diag(M)_{/S}\monic G$ whose image is a
maximal torus. Just as before, there is a decomposition
$\fg=\ft\oplus \bigoplus \fg_\alpha$, except now $\fg$ (and the $\fg_\alpha$)
is a locally free sheaf on $S$. We say that $G$ is \emph{split} if the
following conditions hold:
\begin{enumerate}
\item Each $\fg_\alpha$ is a free $\sO_S$-module.
\item Each root $\alpha$ (resp.~each coroot $\check\alpha$) is constant,
i.e.~induced by an element of $M$ (resp.~$M^\vee$).
\end{enumerate}
Given the obvious notion of
``pinned reductive group over $S$,'' the classification result in
\autoref{thm:reductive-classification} actually gives an equivalence of
categories
\[
\reductivegroups_{/S}^\mathrm{pinn} \iso \rootdata^\mathrm{red,pinn} .
\]
In particular, for each reduced root datum $\sR$, there is a reductive group
scheme $G_{\sR/\dZ}$ with root datum $\sR$, such that for any scheme $S$, the
unique (up to isomorphism) reductive group scheme with root datum $\sR$ is the
base-change $G_{\sR/S} = (G_{\sR/\dZ})_S$. In particular, if $k$ is a field,
the unique split reductive $k$-group with root datum $\sR$ is
$G_{\sR/k}$. One calls $G_{\sR/\dZ}$ the \emph{Chevalley-Demazure group scheme
of type $\sR$}.