You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
2022-08-31 08:51:10 sparseml.optim.manager INFO Created recipe manager with metadata: {
"metadata": null
}
Created recipe manager with metadata: {
"metadata": null
}
Transferred 342/349 items from yolov5s.pt
Scaled weight_decay = 0.0005
optimizer: SGD with parameter groups 57 weight (no decay), 60 weight, 60 bias
albumentations: Blur(always_apply=False, p=0.01, blur_limit=(3, 7)), MedianBlur(always_apply=False, p=0.01, blur_limit=(3, 7)), ToGray(always_apply=False, p=0.01), CLAHE(always_apply=False, p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))
train: Scanning '/content/drive/MyDrive/colab/yolov5_cpu/datasets/train/labels.cache' images and labels... 2661 found, 0 missing, 0 empty, 0 corrupt: 100% 2661/2661 [00:00<?, ?it/s]
val: Scanning '/content/drive/MyDrive/colab/yolov5_cpu/datasets/valid/labels.cache' images and labels... 254 found, 0 missing, 0 empty, 0 corrupt: 100% 254/254 [00:00<?, ?it/s]
[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)
[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)
[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)
[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)
Plotting labels to yolov5-deepsparse/yolov5s-sgd-pruned-quantized2/labels.jpg...
AutoAnchor: 4.94 anchors/target, 0.998 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅
Image sizes 640 train, 640 val
Using 4 dataloader workers
Logging results to yolov5-deepsparse/yolov5s-sgd-pruned-quantized2
Starting training for 300 epochs...
Disabling LR scheduler, managing LR using SparseML recipe
Overriding number of epochs from SparseML manager to 300
Epoch gpu_mem box obj cls labels img_size
0/239 13.5G 0.09351 0.08568 0.02641 403 640: 100% 42/42 [04:13<00:00, 6.03s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:08<00:00, 4.22s/it]
all 254 1962 0.143 0.549 0.206 0.0441
Epoch gpu_mem box obj cls labels img_size
1/239 15.3G 0.0648 0.08876 0.01514 413 640: 100% 42/42 [01:05<00:00, 1.56s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:03<00:00, 1.92s/it]
all 254 1962 0.45 0.568 0.474 0.132
Epoch gpu_mem box obj cls labels img_size
2/239 15.4G 0.05597 0.0865 0.006696 498 640: 100% 42/42 [01:09<00:00, 1.64s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:03<00:00, 1.89s/it]
all 254 1962 0.673 0.727 0.696 0.227
Epoch gpu_mem box obj cls labels img_size
3/239 15.4G 0.04954 0.08305 0.004265 406 640: 100% 42/42 [01:10<00:00, 1.67s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:03<00:00, 1.52s/it]
all 254 1962 0.725 0.81 0.812 0.303
.
149/239 15.7G 0.02356 0.04775 0.000539 431 640: 100% 42/42 [01:11<00:00, 1.69s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:02<00:00, 1.35s/it]
all 254 1962 0.857 0.93 0.925 0.482
Epoch gpu_mem box obj cls labels img_size
150/239 15.7G 0.02364 0.04813 0.0004901 356 640: 100% 42/42 [01:09<00:00, 1.65s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:02<00:00, 1.40s/it]
all 254 1962 0.89 0.895 0.925 0.492
Epoch gpu_mem box obj cls labels img_size
151/239 15.7G 0.02364 0.04794 0.000441 352 640: 100% 42/42 [01:11<00:00, 1.70s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:02<00:00, 1.43s/it]
all 254 1962 0.883 0.915 0.922 0.499
Epoch gpu_mem box obj cls labels img_size
152/239 15.7G 0.02343 0.0488 0.0004617 474 640: 100% 42/42 [01:09<00:00, 1.65s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:02<00:00, 1.29s/it]
all 254 1962 0.872 0.918 0.921 0.476
Epoch gpu_mem box obj cls labels img_size
153/239 15.7G 0.02356 0.04794 0.0004719 414 640: 100% 42/42 [01:11<00:00, 1.71s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:02<00:00, 1.30s/it]
all 254 1962 0.874 0.901 0.916 0.453
Epoch gpu_mem box obj cls labels img_size
154/239 15.7G 0.0236 0.04801 0.0004782 365 640: 100% 42/42 [01:09<00:00, 1.65s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:02<00:00, 1.37s/it]
all 254 1962 0.877 0.92 0.921 0.469
Epoch gpu_mem box obj cls labels img_size
155/239 15.7G 0.02342 0.0487 0.0004548 422 640: 100% 42/42 [01:11<00:00, 1.71s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:02<00:00, 1.36s/it]
all 254 1962 0.876 0.908 0.918 0.457
Epoch gpu_mem box obj cls labels img_size
156/239 15.7G 0.02342 0.04807 0.0004876 431 640: 100% 42/42 [01:08<00:00, 1.64s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:02<00:00, 1.32s/it]
all 254 1962 0.884 0.899 0.924 0.461
Epoch gpu_mem box obj cls labels img_size
157/239 15.7G 0.02369 0.04774 0.0004496 445 640: 100% 42/42 [01:11<00:00, 1.70s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:02<00:00, 1.38s/it]
all 254 1962 0.889 0.904 0.925 0.492
Epoch gpu_mem box obj cls labels img_size
158/239 15.7G 0.02323 0.04796 0.000464 465 640: 100% 42/42 [01:09<00:00, 1.66s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:02<00:00, 1.36s/it]
all 254 1962 0.866 0.909 0.913 0.473
Epoch gpu_mem box obj cls labels img_size
159/239 15.7G 0.02335 0.04735 0.0004544 466 640: 100% 42/42 [01:10<00:00, 1.68s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:02<00:00, 1.37s/it]
all 254 1962 0.869 0.898 0.914 0.457
Epoch gpu_mem box obj cls labels img_size
160/239 15.7G 0.02319 0.04785 0.0004265 533 640: 100% 42/42 [01:09<00:00, 1.65s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:02<00:00, 1.42s/it]
all 254 1962 0.88 0.907 0.92 0.476
Epoch gpu_mem box obj cls labels img_size
161/239 15.7G 0.02315 0.04724 0.0004371 472 640: 100% 42/42 [01:10<00:00, 1.67s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:02<00:00, 1.29s/it]
all 254 1962 0.884 0.9 0.918 0.445
Epoch gpu_mem box obj cls labels img_size
162/239 15.7G 0.02322 0.04771 0.0004138 369 640: 100% 42/42 [01:10<00:00, 1.67s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:02<00:00, 1.31s/it]
all 254 1962 0.872 0.915 0.919 0.451
Epoch gpu_mem box obj cls labels img_size
163/239 15.7G 0.02302 0.04781 0.0004746 431 640: 100% 42/42 [01:10<00:00, 1.67s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:02<00:00, 1.38s/it]
all 254 1962 0.863 0.92 0.918 0.45
Epoch gpu_mem box obj cls labels img_size
164/239 15.7G 0.02305 0.04701 0.0004676 507 640: 100% 42/42 [01:09<00:00, 1.66s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:02<00:00, 1.36s/it]
all 254 1962 0.858 0.919 0.914 0.447
Epoch gpu_mem box obj cls labels img_size
165/239 15.7G 0.02285 0.04715 0.0004571 502 640: 100% 42/42 [01:10<00:00, 1.69s/it]
Class Images Labels P R [email protected][email protected]:.95: 100% 2/2 [00:02<00:00, 1.39s/it]
all 254 1962 0.86 0.906 0.914 0.426
Stopping training early as no improvement observed in last 100 epochs. Best results observed at epoch 65, best model saved as best.pt.
To update EarlyStopping(patience=100) pass a new patience value, i.e. python train.py --patience 300 or use --patience 0 to disable EarlyStopping.
241 epochs completed in 3.501 hours.
Optimizer stripped from yolov5-deepsparse/yolov5s-sgd-pruned-quantized2/weights/last.pt, 42.5MB
Optimizer stripped from yolov5-deepsparse/yolov5s-sgd-pruned-quantized2/weights/best.pt, 42.5MB
Validating yolov5-deepsparse/yolov5s-sgd-pruned-quantized2/weights/best.pt...
Fusing layers...
YOLOv5s summary: 213 layers, 7015519 parameters, 0 gradients
2022-08-31 12:21:43 sparseml.optim.manager INFO Created recipe manager with metadata: {
"metadata": null
}
Created recipe manager with metadata: {
"metadata": null
}
Traceback (most recent call last):
File "./yolov5-train/train.py", line 745, in
main(opt)
File "./yolov5-train/train.py", line 641, in main
train(opt.hyp, opt, device, callbacks)
File "./yolov5-train/train.py", line 514, in train
model=load_checkpoint(type_='ensemble', weights=best, device=device)[0],
File "/content/drive/MyDrive/colab/yolov5_cpu/yolov5-train/export.py", line 529, in load_checkpoint
state_dict = load_state_dict(model, state_dict, run_mode=not ensemble_type, exclude_anchors=exclude_anchors)
File "/content/drive/MyDrive/colab/yolov5_cpu/yolov5-train/export.py", line 553, in load_state_dict
model.load_state_dict(state_dict, strict=not run_mode) # load
File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1407, in load_state_dict
self.class.name, "\n\t".join(error_msgs)))
RuntimeError: Error(s) in loading state_dict for Model:
Missing key(s) in state_dict: "model.0.conv.quant.activation_post_process.scale", "model.0.conv.quant.activation_post_process.zero_point", "model.0.conv.quant.activation_post_process.fake_quant_enabled", "model.0.conv.quant.activation_post_process.observer_enabled", "model.0.conv.quant.activation_post_process.scale", "model.0.conv.quant.activation_post_process.zero_point", "model.0.conv.quant.activation_post_process.activation_post_process.min_val", "model.0.conv.quant.activation_post_process.activation_post_process.max_val", "model.0.conv.module.weight", "model.0.conv.module.bias", "model.0.conv.module.weight_fake_quant.scale", "model.0.conv.module.weight_fake_quant.zero_point", "model.0.conv.module.weight_fake_quant.fake_quant_enabled", "model.0.conv.module.weight_fake_quant.observer_enabled", "model.0.conv.module.weight_fake_quant.scale", "model.0.conv.module.weight_fake_quant.zero_point", "model.0.conv.module.weight_fake_quant.activation_post_process.min_val", "model.0.conv.module.weight_fake_quant.activation_post_process.max_val", "model.0.conv.module.activation_post_process.scale", "model.0.conv.module.activation_post_process.zero_point", "model.0.conv.module.activation_post_process.fake_quant_enabled", "model.0.conv.module.activation_post_process.observer_enabled", "model.0.conv.module.activation_post_process.scale", "model.0.conv.module.activation_post_process.zero_point", "model.0.conv.module.activation_post_process.activation_post_process.min_val", "model.0.conv.module.activation_post_process.activation_post_process.max_val", "model.1.conv.quant.activation_post_process.scale", "model.1.conv.quant.activation_post_process.zero_point", "model.1.conv.quant.activation_post_process.fake_quant_enabled", "model.1.conv.quant.activation_post_process.observer_enabled", "model.1.conv.quant.activation_post_process.scale", "model.1.conv.quant.activation_post_process.zero_point", "model.1.conv.quant.activation_post_process.activation_post_process.min_val", "model.1.conv.quant.activation_post_process.activation_post_process.max_val", "model.1.conv.module.weight", .................So on..................
The text was updated successfully, but these errors were encountered:
train: weights=yolov5s.pt, cfg=./yolov5-train/models/yolov5s.yaml, data=./datasets/data.yaml, hyp=data/hyps/hyp.scratch.yaml, epochs=300, batch_size=64, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=yolov5-deepsparse, name=yolov5s-sgd-pruned-quantized, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest, recipe=./recipes/yolov5.transfer_learn_pruned_quantized.md, disable_ema=False, max_train_steps=-1, max_eval_steps=-1, one_shot=False, num_export_samples=0
github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5
requirements: /content/drive/MyDrive/colab/yolov5_cpu/yolov5-train/requirements.txt not found, check failed.
fatal: not a git repository (or any parent up to mount point /content)
Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).
YOLOv5 🚀 2022-6-27 torch 1.9.0+cu111 CUDA:0 (Tesla P100-PCIE-16GB, 16281MiB)
hyperparameters: lr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
Weights & Biases: run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)
TensorBoard: Start with 'tensorboard --logdir yolov5-deepsparse', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=2
0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2]
1 -1 1 18560 models.common.Conv [32, 64, 3, 2]
2 -1 1 18816 models.common.C3 [64, 64, 1]
3 -1 1 73984 models.common.Conv [64, 128, 3, 2]
4 -1 2 115712 models.common.C3 [128, 128, 2]
5 -1 1 295424 models.common.Conv [128, 256, 3, 2]
6 -1 3 625152 models.common.C3 [256, 256, 3]
7 -1 1 1180672 models.common.Conv [256, 512, 3, 2]
8 -1 1 1182720 models.common.C3 [512, 512, 1]
9 -1 1 656896 models.common.SPPF [512, 512, 5]
10 -1 1 131584 models.common.Conv [512, 256, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 models.common.Concat [1]
13 -1 1 361984 models.common.C3 [512, 256, 1, False]
14 -1 1 33024 models.common.Conv [256, 128, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 models.common.Concat [1]
17 -1 1 90880 models.common.C3 [256, 128, 1, False]
18 -1 1 147712 models.common.Conv [128, 128, 3, 2]
19 [-1, 14] 1 0 models.common.Concat [1]
20 -1 1 296448 models.common.C3 [256, 256, 1, False]
21 -1 1 590336 models.common.Conv [256, 256, 3, 2]
22 [-1, 10] 1 0 models.common.Concat [1]
23 -1 1 1182720 models.common.C3 [512, 512, 1, False]
24 [17, 20, 23] 1 18879 models.yolo.Detect [2, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
YOLOv5s summary: 270 layers, 7025023 parameters, 7025023 gradients
2022-08-31 08:51:10 sparseml.optim.manager INFO Created recipe manager with metadata: {
"metadata": null
}
Created recipe manager with metadata: {
"metadata": null
}
Transferred 342/349 items from yolov5s.pt
Scaled weight_decay = 0.0005
optimizer: SGD with parameter groups 57 weight (no decay), 60 weight, 60 bias
albumentations: Blur(always_apply=False, p=0.01, blur_limit=(3, 7)), MedianBlur(always_apply=False, p=0.01, blur_limit=(3, 7)), ToGray(always_apply=False, p=0.01), CLAHE(always_apply=False, p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))
train: Scanning '/content/drive/MyDrive/colab/yolov5_cpu/datasets/train/labels.cache' images and labels... 2661 found, 0 missing, 0 empty, 0 corrupt: 100% 2661/2661 [00:00<?, ?it/s]
val: Scanning '/content/drive/MyDrive/colab/yolov5_cpu/datasets/valid/labels.cache' images and labels... 254 found, 0 missing, 0 empty, 0 corrupt: 100% 254/254 [00:00<?, ?it/s]
[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)
[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)
[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)
[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)
Plotting labels to yolov5-deepsparse/yolov5s-sgd-pruned-quantized2/labels.jpg...
AutoAnchor: 4.94 anchors/target, 0.998 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅
Image sizes 640 train, 640 val
Using 4 dataloader workers
Logging results to yolov5-deepsparse/yolov5s-sgd-pruned-quantized2
Starting training for 300 epochs...
Disabling LR scheduler, managing LR using SparseML recipe
Overriding number of epochs from SparseML manager to 300
.
.
.
.
Epoch gpu_mem box obj cls labels img_size
148/239 15.7G 0.02369 0.04871 0.0005125 364 640: 100% 42/42 [01:11<00:00, 1.70s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.34s/it]
all 254 1962 0.872 0.917 0.918 0.47
149/239 15.7G 0.02356 0.04775 0.000539 431 640: 100% 42/42 [01:11<00:00, 1.69s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.35s/it]
all 254 1962 0.857 0.93 0.925 0.482
150/239 15.7G 0.02364 0.04813 0.0004901 356 640: 100% 42/42 [01:09<00:00, 1.65s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.40s/it]
all 254 1962 0.89 0.895 0.925 0.492
151/239 15.7G 0.02364 0.04794 0.000441 352 640: 100% 42/42 [01:11<00:00, 1.70s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.43s/it]
all 254 1962 0.883 0.915 0.922 0.499
152/239 15.7G 0.02343 0.0488 0.0004617 474 640: 100% 42/42 [01:09<00:00, 1.65s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.29s/it]
all 254 1962 0.872 0.918 0.921 0.476
153/239 15.7G 0.02356 0.04794 0.0004719 414 640: 100% 42/42 [01:11<00:00, 1.71s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.30s/it]
all 254 1962 0.874 0.901 0.916 0.453
154/239 15.7G 0.0236 0.04801 0.0004782 365 640: 100% 42/42 [01:09<00:00, 1.65s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.37s/it]
all 254 1962 0.877 0.92 0.921 0.469
155/239 15.7G 0.02342 0.0487 0.0004548 422 640: 100% 42/42 [01:11<00:00, 1.71s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.36s/it]
all 254 1962 0.876 0.908 0.918 0.457
156/239 15.7G 0.02342 0.04807 0.0004876 431 640: 100% 42/42 [01:08<00:00, 1.64s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.32s/it]
all 254 1962 0.884 0.899 0.924 0.461
157/239 15.7G 0.02369 0.04774 0.0004496 445 640: 100% 42/42 [01:11<00:00, 1.70s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.38s/it]
all 254 1962 0.889 0.904 0.925 0.492
158/239 15.7G 0.02323 0.04796 0.000464 465 640: 100% 42/42 [01:09<00:00, 1.66s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.36s/it]
all 254 1962 0.866 0.909 0.913 0.473
159/239 15.7G 0.02335 0.04735 0.0004544 466 640: 100% 42/42 [01:10<00:00, 1.68s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.37s/it]
all 254 1962 0.869 0.898 0.914 0.457
160/239 15.7G 0.02319 0.04785 0.0004265 533 640: 100% 42/42 [01:09<00:00, 1.65s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.42s/it]
all 254 1962 0.88 0.907 0.92 0.476
161/239 15.7G 0.02315 0.04724 0.0004371 472 640: 100% 42/42 [01:10<00:00, 1.67s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.29s/it]
all 254 1962 0.884 0.9 0.918 0.445
162/239 15.7G 0.02322 0.04771 0.0004138 369 640: 100% 42/42 [01:10<00:00, 1.67s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.31s/it]
all 254 1962 0.872 0.915 0.919 0.451
163/239 15.7G 0.02302 0.04781 0.0004746 431 640: 100% 42/42 [01:10<00:00, 1.67s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.38s/it]
all 254 1962 0.863 0.92 0.918 0.45
164/239 15.7G 0.02305 0.04701 0.0004676 507 640: 100% 42/42 [01:09<00:00, 1.66s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.36s/it]
all 254 1962 0.858 0.919 0.914 0.447
165/239 15.7G 0.02285 0.04715 0.0004571 502 640: 100% 42/42 [01:10<00:00, 1.69s/it]
Class Images Labels P R [email protected] [email protected]:.95: 100% 2/2 [00:02<00:00, 1.39s/it]
all 254 1962 0.86 0.906 0.914 0.426
Stopping training early as no improvement observed in last 100 epochs. Best results observed at epoch 65, best model saved as best.pt.
To update EarlyStopping(patience=100) pass a new patience value, i.e.
python train.py --patience 300
or use--patience 0
to disable EarlyStopping.241 epochs completed in 3.501 hours.
Optimizer stripped from yolov5-deepsparse/yolov5s-sgd-pruned-quantized2/weights/last.pt, 42.5MB
Optimizer stripped from yolov5-deepsparse/yolov5s-sgd-pruned-quantized2/weights/best.pt, 42.5MB
Validating yolov5-deepsparse/yolov5s-sgd-pruned-quantized2/weights/best.pt...
Fusing layers...
YOLOv5s summary: 213 layers, 7015519 parameters, 0 gradients
2022-08-31 12:21:43 sparseml.optim.manager INFO Created recipe manager with metadata: {
"metadata": null
}
Created recipe manager with metadata: {
"metadata": null
}
Traceback (most recent call last):
File "./yolov5-train/train.py", line 745, in
main(opt)
File "./yolov5-train/train.py", line 641, in main
train(opt.hyp, opt, device, callbacks)
File "./yolov5-train/train.py", line 514, in train
model=load_checkpoint(type_='ensemble', weights=best, device=device)[0],
File "/content/drive/MyDrive/colab/yolov5_cpu/yolov5-train/export.py", line 529, in load_checkpoint
state_dict = load_state_dict(model, state_dict, run_mode=not ensemble_type, exclude_anchors=exclude_anchors)
File "/content/drive/MyDrive/colab/yolov5_cpu/yolov5-train/export.py", line 553, in load_state_dict
model.load_state_dict(state_dict, strict=not run_mode) # load
File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1407, in load_state_dict
self.class.name, "\n\t".join(error_msgs)))
RuntimeError: Error(s) in loading state_dict for Model:
Missing key(s) in state_dict: "model.0.conv.quant.activation_post_process.scale", "model.0.conv.quant.activation_post_process.zero_point", "model.0.conv.quant.activation_post_process.fake_quant_enabled", "model.0.conv.quant.activation_post_process.observer_enabled", "model.0.conv.quant.activation_post_process.scale", "model.0.conv.quant.activation_post_process.zero_point", "model.0.conv.quant.activation_post_process.activation_post_process.min_val", "model.0.conv.quant.activation_post_process.activation_post_process.max_val", "model.0.conv.module.weight", "model.0.conv.module.bias", "model.0.conv.module.weight_fake_quant.scale", "model.0.conv.module.weight_fake_quant.zero_point", "model.0.conv.module.weight_fake_quant.fake_quant_enabled", "model.0.conv.module.weight_fake_quant.observer_enabled", "model.0.conv.module.weight_fake_quant.scale", "model.0.conv.module.weight_fake_quant.zero_point", "model.0.conv.module.weight_fake_quant.activation_post_process.min_val", "model.0.conv.module.weight_fake_quant.activation_post_process.max_val", "model.0.conv.module.activation_post_process.scale", "model.0.conv.module.activation_post_process.zero_point", "model.0.conv.module.activation_post_process.fake_quant_enabled", "model.0.conv.module.activation_post_process.observer_enabled", "model.0.conv.module.activation_post_process.scale", "model.0.conv.module.activation_post_process.zero_point", "model.0.conv.module.activation_post_process.activation_post_process.min_val", "model.0.conv.module.activation_post_process.activation_post_process.max_val", "model.1.conv.quant.activation_post_process.scale", "model.1.conv.quant.activation_post_process.zero_point", "model.1.conv.quant.activation_post_process.fake_quant_enabled", "model.1.conv.quant.activation_post_process.observer_enabled", "model.1.conv.quant.activation_post_process.scale", "model.1.conv.quant.activation_post_process.zero_point", "model.1.conv.quant.activation_post_process.activation_post_process.min_val", "model.1.conv.quant.activation_post_process.activation_post_process.max_val", "model.1.conv.module.weight", .................So on..................
The text was updated successfully, but these errors were encountered: