This provides support for implementing KFP pipelines automating transform's execution. It comprises 3 main modules
Depends on the using KFV version either kfp_v1_workflow_support
or kfp_v2_workflow_support
should be used.
See also how these libraries are used for kfp components implementation and implementation of the actual workflow
- python 3.10 or later
- git command line tools
- pre-commit
- twine (pip install twine)
- but on Mac you may have to include a dir in your PATH, such as
export PATH=$PATH:/Library/Frameworks/Python.framework/Versions/3.10/bin
- but on Mac you may have to include a dir in your PATH, such as
Simple clone the repo and set up the pre-commit hooks.
git clone [email protected]:IBM/data-prep-kit.git
cd kfp/kfp_support_lib
pre-commit install
If you don't have pre-commit, you can install from here
The process of creating a release for fm_data_processing_kfp
package involves the following steps:
cd to the package directory.
update the version in .make.versions file.
run make set-versions
and make build
and make publish
.
To run the package tests perform the following:
To begin with, establish a Kind cluster and deploy all required components by executing the makfefile command in the main directory of this repository. As an alternative, you can manually execute the instructions provided in the README.md file.
make setup
The next step is to deploy the data-prep-kit-kfp
package locally within a Python virtual environment.
make build
lastly, execute the tests:
make test
It is advisable to execute the following command prior to running make test
once more. This will ensure that any
previous test runs resources are removed before starting new tests.
kubectl delete workflows -n kubeflow --all