-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrag.jl
171 lines (151 loc) · 4.03 KB
/
rag.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
using Base.Threads
@inline function hamming_distance(s1::AbstractString, s2::AbstractString)::Int
s = 0
for (c1, c2) in zip(s1, s2)
if c1 != c2
s += 1
end
end
s
end
@inline function hamming_distance(x1::T, x2::T)::Int where {T<:Integer}
return Int(count_ones(x1 ⊻ x2))
end
@inline function hamming_distance1(
x1::AbstractArray{T},
x2::AbstractArray{T},
)::Int where {T<:Integer}
s = 0
for i in eachindex(x1, x2)
s += hamming_distance(x1[i], x2[i])
end
s
end
@inline function hamming_distance(
x1::AbstractArray{T},
x2::AbstractArray{T},
)::Int where {T<:Integer}
s = 0
@inbounds @simd for i in eachindex(x1, x2)
s += hamming_distance(x1[i], x2[i])
end
s
end
mutable struct MaxHeap
const data::Vector{Pair{Int,Int}}
current_idx::Int # add pairs until current_idx > length(data)
const k::Int
function MaxHeap(k::Int)
new(fill((typemax(Int) => -1), k), 1, k)
end
end
function insert!(heap::MaxHeap, value::Pair{Int,Int})
if heap.current_idx <= heap.k
heap.data[heap.current_idx] = value
heap.current_idx += 1
if heap.current_idx > heap.k
makeheap!(heap)
end
elseif value.first < heap.data[1].first
heap.data[1] = value
heapify!(heap, 1)
end
end
function makeheap!(heap::MaxHeap)
for i = div(heap.k, 2):-1:1
heapify!(heap, i)
end
end
function heapify!(heap::MaxHeap, i::Int)
left = 2 * i
right = 2 * i + 1
largest = i
if left <= length(heap.data) && heap.data[left].first > heap.data[largest].first
largest = left
end
if right <= length(heap.data) && heap.data[right].first > heap.data[largest].first
largest = right
end
if largest != i
heap.data[i], heap.data[largest] = heap.data[largest], heap.data[i]
heapify!(heap, largest)
end
end
function _k_closest(
db::AbstractVector{V},
query::AbstractVector{T},
k::Int;
startind::Int = 1,
) where {T<:Integer,V<:AbstractVector{T}}
heap = MaxHeap(k)
@inbounds for i in eachindex(db)
d = hamming_distance(db[i], query)
insert!(heap, d => startind + i - 1)
end
return heap.data
end
function k_closest(
db::AbstractVector{V},
query::AbstractVector{T},
k::Int;
startind::Int = 1,
) where {T<:Integer,V<:AbstractVector{T}}
data = _k_closest(db, query, k; startind = startind)
return sort!(data, by = x -> x.first)
end
function k_closest_parallel(
db::AbstractArray{V},
query::AbstractVector{T},
k::Int;
t::Int=nthreads(),
) where {T<:Integer,V<:AbstractVector{T}}
n = length(db)
if n < 10_000 || t == 1
return k_closest(db, query, k)
end
task_ranges = [(i:min(i + n ÷ t - 1, n)) for i = 1:n÷t:n]
tasks = map(task_ranges) do r
Threads.@spawn _k_closest(view(db, r), query, k; startind = r[1])
end
results = fetch.(tasks)
sort!(vcat(results...), by = x -> x.first)[1:k]
end
function _k_closest(
db::AbstractMatrix{T},
query::AbstractVector{T},
k::Int;
startind::Int = 1,
) where {T<:Integer}
heap = MaxHeap(k)
@inbounds for i = 1:size(db, 2)
d = hamming_distance(view(db, :, i), query)
insert!(heap, d => startind + i - 1)
end
return heap.data
end
function k_closest(
db::AbstractMatrix{T},
query::AbstractVector{T},
k::Int;
startind::Int = 1,
) where {T<:Integer}
data = _k_closest(db, query, k; startind = startind)
return sort!(data, by = x -> x.first)
end
function k_closest_parallel(
db::AbstractMatrix{T},
query::AbstractVector{T},
k::Int;
t::Int=nthreads(),
) where {T<:Integer}
n = size(db, 2)
if n < 10_000 || t == 1
return k_closest(db, query, k)
end
task_ranges = [(i:min(i + n ÷ t - 1, n)) for i = 1:n÷t:n]
tasks = map(task_ranges) do r
Threads.@spawn _k_closest(view(db, :, r), query, k; startind = r[1])
end
results = fetch.(tasks)
sort!(vcat(results...), by = x -> x.first)[1:k]
end