-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvision.py
208 lines (170 loc) · 8.68 KB
/
vision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import cv2 as cv
import numpy as np
from hsvfilter import HsvFilter
class Vision:
# constants
TRACKBAR_WINDOW = "Trackbars"
# properties
method = None
# constructor
def __init__(self, method=cv.TM_CCOEFF_NORMED):
# There are 6 methods to choose from:
# TM_CCOEFF, TM_CCOEFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_SQDIFF, TM_SQDIFF_NORMED
self.method = method
def find(self, haystack_img, needle_img, threshold=0.5, max_results=10):
# print('finding nemo ')
# save the haystack and needle images to disk so we can review it
# cv.imwrite('found.jpg', haystack_img)
# cv.imwrite('found2.jpg', needle_img)
# load the image we're trying to match
# https://docs.opencv.org/4.2.0/d4/da8/group__imgcodecs.html
# needle_img = cv.imread(needle_img_path, cv.IMREAD_UNCHANGED)
# Save the dimensions of the needle image
needle_w = needle_img.shape[1]
needle_h = needle_img.shape[0]
# print('needle_w: ', needle_w)
# print('needle_h: ', needle_h)
# run the OpenCV algorithm
result = cv.matchTemplate(haystack_img, needle_img, self.method)
# Get the all the positions from the match result that exceed our threshold
locations = np.where(result >= threshold)
locations = list(zip(*locations[::-1]))
# print(locations)
# if we found no results, return now. this reshape of the empty array allows us to
# concatenate together results without causing an error
if not locations:
return np.array([], dtype=np.int32).reshape(0, 4)
# You'll notice a lot of overlapping rectangles get drawn. We can eliminate those redundant
# locations by using groupRectangles().
# First we need to create the list of [x, y, w, h] rectangles
rectangles = []
for loc in locations:
rect = [int(loc[0]), int(loc[1]), needle_w, needle_h]
# Add every box to the list twice in order to retain single (non-overlapping) boxes
rectangles.append(rect)
rectangles.append(rect)
# Apply group rectangles.
# The groupThreshold parameter should usually be 1. If you put it at 0 then no grouping is
# done. If you put it at 2 then an object needs at least 3 overlapping rectangles to appear
# in the result. I've set eps to 0.5, which is:
# "Relative difference between sides of the rectangles to merge them into a group."
rectangles, weights = cv.groupRectangles(rectangles, groupThreshold=1, eps=1)
#print(rectangles)
# for performance reasons, return a limited number of results.
# these aren't necessarily the best results.
if len(rectangles) > max_results:
print('Warning: too many results, raise the threshold.')
rectangles = rectangles[:max_results]
return rectangles
# given a list of [x, y, w, h] rectangles returned by find(), convert those into a list of
# [x, y] positions in the center of those rectangles where we can click on those found items
def get_click_points(self, rectangles):
points = []
# Loop over all the rectangles
for (x, y, w, h) in rectangles:
# Determine the center position
center_x = x + int(w/2)
center_y = y + int(h/2)
# Save the points
points.append((center_x, center_y))
return points
# given a list of [x, y, w, h] rectangles and a canvas image to draw on, return an image with
# all of those rectangles drawn
def draw_rectangles(self, haystack_img, rectangles):
# these colors are actually BGR
line_color = (0, 255, 0)
line_type = cv.LINE_4
for (x, y, w, h) in rectangles:
# determine the box positions
top_left = (x, y)
bottom_right = (x + w, y + h)
# draw the box
cv.rectangle(haystack_img, top_left, bottom_right, line_color, lineType=line_type)
return haystack_img
# given a list of [x, y] positions and a canvas image to draw on, return an image with all
# of those click points drawn on as crosshairs
def draw_crosshairs(self, haystack_img, points):
# these colors are actually BGR
marker_color = (255, 0, 255)
marker_type = cv.MARKER_CROSS
for (center_x, center_y) in points:
# draw the center point
cv.drawMarker(haystack_img, (center_x, center_y), marker_color, marker_type)
return haystack_img
# create gui window with controls for adjusting arguments in real-time
def init_control_gui(self):
cv.namedWindow(self.TRACKBAR_WINDOW, cv.WINDOW_NORMAL)
cv.resizeWindow(self.TRACKBAR_WINDOW, 350, 700)
# required callback. we'll be using getTrackbarPos() to do lookups
# instead of using the callback.
def nothing(position):
pass
# create trackbars for bracketing.
# OpenCV scale for HSV is H: 0-179, S: 0-255, V: 0-255
cv.createTrackbar('HMin', self.TRACKBAR_WINDOW, 0, 179, nothing)
cv.createTrackbar('SMin', self.TRACKBAR_WINDOW, 0, 255, nothing)
cv.createTrackbar('VMin', self.TRACKBAR_WINDOW, 0, 255, nothing)
cv.createTrackbar('HMax', self.TRACKBAR_WINDOW, 0, 179, nothing)
cv.createTrackbar('SMax', self.TRACKBAR_WINDOW, 0, 255, nothing)
cv.createTrackbar('VMax', self.TRACKBAR_WINDOW, 0, 255, nothing)
# Set default value for Max HSV trackbars
cv.setTrackbarPos('HMax', self.TRACKBAR_WINDOW, 179)
cv.setTrackbarPos('SMax', self.TRACKBAR_WINDOW, 255)
cv.setTrackbarPos('VMax', self.TRACKBAR_WINDOW, 255)
# trackbars for increasing/decreasing saturation and value
cv.createTrackbar('SAdd', self.TRACKBAR_WINDOW, 0, 255, nothing)
cv.createTrackbar('SSub', self.TRACKBAR_WINDOW, 0, 255, nothing)
cv.createTrackbar('VAdd', self.TRACKBAR_WINDOW, 0, 255, nothing)
cv.createTrackbar('VSub', self.TRACKBAR_WINDOW, 0, 255, nothing)
# returns an HSV filter object based on the control GUI values
def get_hsv_filter_from_controls(self):
# Get current positions of all trackbars
hsv_filter = HsvFilter()
hsv_filter.hMin = cv.getTrackbarPos('HMin', self.TRACKBAR_WINDOW)
hsv_filter.sMin = cv.getTrackbarPos('SMin', self.TRACKBAR_WINDOW)
hsv_filter.vMin = cv.getTrackbarPos('VMin', self.TRACKBAR_WINDOW)
hsv_filter.hMax = cv.getTrackbarPos('HMax', self.TRACKBAR_WINDOW)
hsv_filter.sMax = cv.getTrackbarPos('SMax', self.TRACKBAR_WINDOW)
hsv_filter.vMax = cv.getTrackbarPos('VMax', self.TRACKBAR_WINDOW)
hsv_filter.sAdd = cv.getTrackbarPos('SAdd', self.TRACKBAR_WINDOW)
hsv_filter.sSub = cv.getTrackbarPos('SSub', self.TRACKBAR_WINDOW)
hsv_filter.vAdd = cv.getTrackbarPos('VAdd', self.TRACKBAR_WINDOW)
hsv_filter.vSub = cv.getTrackbarPos('VSub', self.TRACKBAR_WINDOW)
return hsv_filter
# given an image and an HSV filter, apply the filter and return the resulting image.
# if a filter is not supplied, the control GUI trackbars will be used
def apply_hsv_filter(self, original_image, hsv_filter=None):
# convert image to HSV
hsv = cv.cvtColor(original_image, cv.COLOR_BGR2HSV)
# if we haven't been given a defined filter, use the filter values from the GUI
if not hsv_filter:
hsv_filter = self.get_hsv_filter_from_controls()
# add/subtract saturation and value
h, s, v = cv.split(hsv)
s = self.shift_channel(s, hsv_filter.sAdd)
s = self.shift_channel(s, -hsv_filter.sSub)
v = self.shift_channel(v, hsv_filter.vAdd)
v = self.shift_channel(v, -hsv_filter.vSub)
hsv = cv.merge([h, s, v])
# Set minimum and maximum HSV values to display
lower = np.array([hsv_filter.hMin, hsv_filter.sMin, hsv_filter.vMin])
upper = np.array([hsv_filter.hMax, hsv_filter.sMax, hsv_filter.vMax])
# Apply the thresholds
mask = cv.inRange(hsv, lower, upper)
result = cv.bitwise_and(hsv, hsv, mask=mask)
# convert back to BGR for imshow() to display it properly
img = cv.cvtColor(result, cv.COLOR_HSV2BGR)
return img
# apply adjustments to an HSV channel
# https://stackoverflow.com/questions/49697363/shifting-hsv-pixel-values-in-python-using-numpy
def shift_channel(self, c, amount):
if amount > 0:
lim = 255 - amount
c[c >= lim] = 255
c[c < lim] += amount
elif amount < 0:
amount = -amount
lim = amount
c[c <= lim] = 0
c[c > lim] -= amount
return c