-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdicom_helper.py
103 lines (87 loc) · 3.03 KB
/
dicom_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import sys
import os
import statistics
import numpy as np
import pylidc as pl
# Disable
def blockPrint():
sys.stdout = open(os.devnull, 'w')
# Restore
def enablePrint():
sys.stdout = sys.__stdout__
class Scanotation():
''' Handles the LIDC-IDRI Dicom files.
args:
number: Patient ID
'''
def __init__(self, number) -> None:
number = str(number).zfill(4)
pid = 'LIDC-IDRI-{}'.format(number)
self.scan = pl.query(pl.Scan).filter(pl.Scan.patient_id == pid).first()
self.nods = self.scan.cluster_annotations()
print("%s has %d nodules." % (self.scan, len(self.nods)))
self.no_nodules = len(self.nods)
self.vol = None
def center(self, nodule_idx = 0):
''' Returns the nodule location.
args:
nodule_idx: Index of nodule, default: 0.
Can be >0 if there are more than one nodules for this recording.
'''
centroids = []
for i in range(len(self.nods[nodule_idx])):
centroids.append(self.nods[nodule_idx][i].centroid)
return np.round(np.mean(centroids,axis=0))
def bbox(self, nodule_idx = 0):
''' Returns the nodule location.
args:
nodule_idx: Index of nodule, default: 0.
Can be >0 if there are more than one nodules for this recording.
'''
return self.nods[nodule_idx][0].bbox()
def load_volume(self):
''' Loads the 3D volume of the scan. (No need to run this outside of the class).
'''
blockPrint()
self.vol = self.scan.to_volume()
enablePrint()
def get_volume(self):
''' Returns the 3D volume of the scan.
'''
if self.vol is None:
self.load_volume()
return self.vol
def nodule_slice(self, nodule_idx = 0):
''' Returns the 2D slice of the scan with a nodule in it.
args:
nodule_idx: Index of nodule, default: 0.
'''
slice_no = int(self.center(nodule_idx)[-1])
if self.vol is None:
self.load_volume()
return self.vol[:,:,slice_no]
def nodule_crop(self, nodule_idx = 0):
''' Returns the 2D slice of the scan with a nodule in it, cropped around the nodule.
args:
nodule_idx: Index of nodule, default: 0.
'''
if self.vol is None:
self.load_volume()
return self.vol[self.bbox(nodule_idx)]
def malignancy(self, nodule_idx = 0):
''' Returns the malignancy of the nodule.
args:
nodule_idx: Index of nodule, default: 0.
'''
nods = self.scan.cluster_annotations()
mals = []
for j in range(len(nods[nodule_idx])):
mals.append(nods[nodule_idx][j].malignancy)
diagnosis=(statistics.mean(mals))
if diagnosis>=4:
malignancy_th = 1
elif diagnosis<=2:
malignancy_th = 0
else:
malignancy_th = -1
return malignancy_th