Skip to content

Latest commit

 

History

History
574 lines (479 loc) · 32.5 KB

README.md

File metadata and controls

574 lines (479 loc) · 32.5 KB

Radio Autoencoder - RADAE

A hybrid Machine Learning/DSP system for sending speech over HF radio channels. The RADAE encoder takes vocoder features such as pitch, short term spectrum and voicing and generates a sequence of analog PSK symbols. These are placed on OFDM carriers and sent over the HF radio channel. The decoder takes the received PSK symbols and produces vocoder features that can be sent to a speech decoder. The system is trained to minimise the distortion of the vocoder features over HF channels. Compared to classical DSP approaches to digital voice, the key innovation is jointly performing transformation, prediction, quantisation, channel coding, and modulation in the ML network.

Scope

This repo is intended to support the authors experimental work, with just enough information for the advanced experimenter to reproduce aspects of the work. The focus is on waveform development, not software configuration. It is not intended to be a polished distribution for general use or to work across multiple Linux distros and operating systems - that will come later. Unless otherwise stated, the code is this repo is intended to run only on Ubuntu Linux 22 on a non-virtual machine.

Quickstart

  1. Installation section
  2. Inference section
  3. If you would like to transmit/receive test files over HF radios: Over the Air/Over the Cable (OTA/OTC)

Attributions and License

This software was derived from RDOVAE Python source (Github xiph/opus.git opus-ng branch opus/dnn/torch/rdovae):

J.-M. Valin, J. Büthe, A. Mustafa, Low-Bitrate Redundancy Coding of Speech Using a Rate-Distortion-Optimized Variational Autoencoder, Proc. ICASSP, arXiv:2212.04453, 2023. (blog post)

The RDOVAE derived Python source code is released under the two-clause BSD license.

Files

File Description
radae/radae.py ML model and channel simulation
radae/dataset.py loading data for training
train.py trains models
inference.py Testing models, injecting channel impairments, simulate modem sync
rx.py Stand alone receiver, use inference.py as transmitter
inference.sh helper script for inference.py
rx.sh helper script for rx.py
ofdm_sync.sh generates curves to evaluate classical DSP sync performance
evaluate.sh script to compare radae to SSB, generates plots and speech samples
evaluate_loop.sh script to run evaluate.sh over a range of SNRs and channels
doppler_spread.m Octave script to generate Doppler spreading samples
load_f32.m Octave script to load .f32 samples
multipath_samples.m Octave script to generate multipath magnitude sample over a time/freq grid
plot_specgram.m Plots sepctrogram of radae modem signals
radae_plots.m Helper Octave script to generate various plots
radio_ae.[tex,pdf] Latex documenation
ota_test.sh Script to automate Over The Air (OTA) testing
Radio Autoencoder Waveform Design.ods Working for OFDM waveform, including pilot and cyclic prefix overheads
compare_models.sh Builds loss versus Eq/No curves for models to objectively compare
est_snr.py Prototype pilot sequence based SNR estimator - doesn't work for multipath
test folder Helper scripts for ctests
loss.py Tool to calculate mean loss between two feature files, a useful objective measure
ml_pilot.py Training low PAPR pilot sequence
stateful_decoder.[py,sh] Inference test that compares stateful to vanilla decoder
stateful_encoder.[py,sh] Inference test that compares stateful to vanilla encoder
radae_tx.[py,sh] streaming RADAE encoder and helper script
radae_rx.[py,sh] streaming RADAE decoder and helper script
resource_est.py WIP estimate CPU/memory resources
radae_base.py Shared ML code between models
radae/bbfm.py Baseband FM PyTorch model
train_bbfm.py Training for BBFM model
inference_bbfm.py Baseband FM inference
inference_bbfm.sh helper script for infereence_bbfm.sh
fm.m Octave analog FM mod/demod simulation
analog_bbfm.sh helper script for analog FM simulation

Installation

Packages

sox, python3, python3-matplotlib and python3-tqdm, octave, octave-signal, cmake. Pytorch should be installed using the instructions from the pytorch web site.

codec2-dev

Supplies some utilities used for ota_test.sh and evaluate.sh

cd ~
git clone https://github.com/drowe67/codec2-dev.git
cd codec2-dev
mkdir build_linux
cd build_linux
cmake -DUNITTEST=1 ..
make ch mksine tlininterp

RADAE

Builds the FARGAN vocoder and ctest framework, most of RADAE is in Python.

cd ~
git clone https://github.com/drowe67/radae.git
cd radae
mkdir build
cd build
cmake ..
make

Building on Windows

While most of RADAE is in Python, there is a lpcnet_demo application that is required to be compiled. To do this for Windows, you can run something like the following from a Linux machine:

wget https://github.com/mstorsjo/llvm-mingw/releases/download/20240619/llvm-mingw-20240619-ucrt-ubuntu-20.04-x86_64.tar.xz
tar xzf llvm-mingw-20240619-ucrt-ubuntu-20.04-x86_64.tar.xz
export PATH=`pwd`/llvm-mingw-20240619-ucrt-ubuntu-20.04-x86_64/bin:$PATH
export RADAE_PATH=`pwd`/radae
cd $RADAE_PATH
mkdir build_windows
cd build_windows
cmake -DCMAKE_TOOLCHAIN_FILE=$RADAE_PATH/cross-compile/mingw-llvm-x86_64.cmake ..
make

(Replace x86_64 in mingw-llvm-x86_64.cmake with either i686 or aarch64 for 32-bit x86 or 64-bit ARM, respectively.)

Once done, lpcnet_demo.exe will be inside the src folder inside build_windows.

Limitations

  • ctests are untested and likely do not work without additional changes.
  • Visual Studio is not supported, only MinGW.
  • Generating a Windows installer is currently not supported. lpcnet_demo.exe is intended to be included with other applications built with MinGW (such as freedv-gui).

Automated Tests

The cmake/ctest framework is being used as a build and test framework. The command lines in CmakeLists.txt are a good source of examples, if you are interested in running the code in this repo. The ctests are a work in progress and may not pass on all systems (see Scope above).

To run the cests:

cd radae/build
ctest

To list tests ctest -N, to run just one test ctest -R inference_model5, to run in verbose mode ctest -V -R inference_model5. You can change the paths to codec2-dev on the cmake command line:

cmake -DCODEC2_DEV=~/tmp/codec2-dev ..

A lot of the tests generate a float IQ sample file. You can listen to this file with:

cat rx.f32 | python3 f32toint16.py --real --scale 8192 | play -t .s16 -r 8000 -c 1 - bandpass 300 2000

The scaling --scale is required as the low SNRs mean the noise peak amplitude can clip 16 bit samples if not carefully scaled.

Inference

inference.py is used for inference, which has been wrapped up in a helper script inference.sh. Inference runs by default on the CPU, but will run on the GPU with the --cuda-visible-devices 0 option.

  1. Generate out.wav at the default Eb/No = 100 dB:

    ./inference.sh model05/checkpoints/checkpoint_epoch_100.pth wav/brian_g8sez.wav out.wav
    
  2. Play output sample to your default aplay sound device at BPSK Eb/No = 3dB:

    ./inference.sh model05/checkpoints/checkpoint_epoch_100.pth wav/brian_g8sez.wav - --EbNodB 3
    
  3. Vanilla LPCNet-fargan (ie no analog VAE) for comparison:

    ./inference.sh model05/checkpoints/checkpoint_epoch_100.pth wav/brian_g8sez.wav - --passthru
    
  4. Multipath demo at approx 0dB B=3000 Hz SNR. First generate multipath channel samples using GNU Octave (only need to be generated once):

    octave:85> Rs=50; Nc=20; multipath_samples("mpp", Rs, Rs, Nc, 60, "h_mpp.f32")
    $ ./inference.sh model05/checkpoints/checkpoint_epoch_100.pth ~/LPCNet/wav/all.wav tmp.wav --EbNodB 3 --write_latent z_hat.f32 --h_file h_mpp.f32
    

    Then use Octave to plot scatter diagram using z_hat latents from channel:

    octave:91> radae_plots; do_plots('z_hat.f32') 
    

Multipath rate Fs

  1. Baseline no noise simulation on Multipath Poor MPP channel:

    octave:85> Fs=8000; Rs=50; Nc=20; multipath_samples("mpp", Fs, Rs, Nc, 60, "h_mpp.f32","g_mpp.f32")
    ./inference.sh model05/checkpoints/checkpoint_epoch_100.pth wav/peter.wav /dev/null --rate_Fs --write_latent z.f32 --write_rx rx.f32 --pilots --pilot_eq --eq_ls --ber_test --EbNo 100 --g_file g_mpp.f32 --cp 0.004
    octave:87> radae_plots; do_plots('z.f32','rx.f32')
    
  2. Multipath Disturbed (MPD) demo:

    ./inference.sh model17/checkpoints/checkpoint_epoch_100.pth wav/brian_g8sez.wav brian_g8sez_mpd_snr3dB.wav --rate_Fs --pilots --pilot_eq --eq_ls --cp 0.004 --bottleneck 3 --EbNodB 6 --g_file g_mpd.f32 --write_rx rx.f32
    

    Optional plots (e.g. spectrogram):

    octave:40> radae_plots; do_plots('z.f32','rx.f32')
    

    Listen to "off air" signal.

    cat rx.f32 | python3 f32toint16.py --real --scale 8192 | sox -t .s16 -r 8000 -c 1 - brian_g8sez_mpd_snr3dB_rx.wav sinc 0.3-2.7k
    

Evaluate script

Automates joint simulation of SSB and RADAE, generates wave files and spectrograms. Can adjust noise for equal C/No or equal P/No.

  1. Run `peter.wav`` through RADAE and SSB using Eb/No=16dB set point, calibrating SSB noise such that P/No is the same for both samples
    ./evaluate.sh model17/checkpoints/checkpoint_epoch_100.pth wav/peter.wav 240521 16 --bottleneck 3 -d --peak
    
  2. As above but MPP channel using Eb/No=6dB set point
    ./evaluate.sh model17/checkpoints/checkpoint_epoch_100.pth wav/peter.wav 240521 6 --bottleneck 3 -d --peak --g_file g_mpp.f32
    
  3. With dim=40 mixed rate model, and we run Eb/No 3dB higher than a dim=80 model. g_nc20_mpp.f32 is a time domain fading file so works for Nc=20 and Nc=10.
    ./evaluate.sh model18/checkpoints/checkpoint_epoch_100.pth wav/peter.wav 240524 9 --bottleneck 3 -d --peak --latent_dim 40 --g_file g_mpp.f32
    

Simulation of Seperate Tx and Rx

We separate the system into a transmitter inference.py and stand alone receiver rx.py. These examples test the OFDM waveform, including pilot symbol insertion, cyclic prefix, least squares phase EQ, and coarse magnitude EQ.

BER tests are useful to calibrate the system, and measure loss from classical DSP based synchronisation. We have a good theoretical model for the expected BER on AWGN and multipath channels.

  1. First generate no-noise reference symnbols for BER measurement z_100dB.f32:

    ./inference.sh model05/checkpoints/checkpoint_epoch_100.pth wav/peter.wav /dev/null --rate_Fs --pilots --write_latent z_100dB.f32 --write_rx rx_100dB.f32 --EbNodB 100 --cp 0.004 --pilot_eq --eq_ls --ber_test
    

    rx_100dB.f32 is the rate Fs IQ sample file, the actual modem signal we could send over the air.

  2. The file z_100dB.f32 can then be used as a reference to measure BER at the receiver, e.g. using the no noise rx_100dB.f32 sample:

    ./rx.sh model05/checkpoints/checkpoint_epoch_100.pth rx_100dB.f32 /dev/null --pilots --pilot_eq --cp 0.004 --plots --time_offset -16 --coarse_mag --ber_test z_100dB.f32
    
  3. An AWGN channel at Eb/No = 0dB, first generate rx_0dB.f32:

    ./inference.sh model05/checkpoints/checkpoint_epoch_100.pth wav/peter.wav /dev/null --rate_Fs --pilots --write_rx rx_0dB.f32 --EbNodB 0 --cp 0.004 --pilot_eq --eq_ls --ber_test
    

    Then demodulate

    ./rx.sh model05/checkpoints/checkpoint_epoch_100.pth rx_0dB.f32 /dev/null --pilots --pilot_eq --cp 0.004 --plots --time_offset -16 --coarse_mag --ber_test z_100dB.f32
    

    This will give a BER of around 0.094, compared to 0.079 theoretical for BPSK, a loss of about 1dB due to non-ideal synchronisation.

  4. Compare to the BER with the ideal phase estimate (pilot based EQ disabled):

    ./inference.sh model05/checkpoints/checkpoint_epoch_100.pth wav/peter.wav t.wav --pilots --rate_Fs --EbNodB 0 --ber_test
    

    Which is exactly the theoretical 0.078. Note the ideal BER for AWGN is given by BER = 0.5*erfc(sqrt(Eb/No)), where Eb/No is the linear Eb/No.

  5. Lets introduce frequency, and magnitude (gain) offsets typical of real radio channels:

    /inference.sh model05/checkpoints/checkpoint_epoch_100.pth wav/peter.wav /dev/null --rate_Fs --pilots --write_rx rx_0dB.f32 --EbNodB 0 --cp 0.004 --pilot_eq --eq_ls --ber_test --freq_offset 2 --gain 0.1
    

    ./rx.sh model05/checkpoints/checkpoint_epoch_100.pth rx_0dB.f32 /dev/null --pilots --pilot_eq --cp 0.004 --plots --time_offset -16 --coarse_mag --ber_test z_100dB.f32

    The acquisition system detected and corrected the 2Hz frequency offset, and the -20dB (--gain 0.1) magntitude offset, and the resulting BER was about the same at 0.095.
    
    
  6. Typical HF multipath channels evolve at around 1 Hz, so it's a good idea to use longer samples to get a meaningful average. First generate the reference z_100dB.f32 file for all.wav:

    ./inference.sh model05/checkpoints/checkpoint_epoch_100.pth wav/all.wav /dev/null --rate_Fs --pilots --write_latent z_100dB.f32 --write_rx rx_100dB.f32 --EbNodB 100 --cp 0.004 --pilot_eq --eq_ls --ber_test
    

    Check that it's doing sensible things with no noise (BER=0):

    ./rx.sh model05/checkpoints/checkpoint_epoch_100.pth rx_100dB.f32 /dev/null --pilots --pilot_eq --cp 0.004 --plots --time_offset -16 --coarse_mag --ber_test z_100dB.f32
    

    Lets generate a MPP sample rx_100dB_mpp.f32 with no noise, and check the scatter diagram is a nice cross shape with BER close to 0:

    ./inference.sh model05/checkpoints/checkpoint_epoch_100.pth wav/all.wav /dev/null --rate_Fs --pilots --write_rx rx_100dB_mpp.f32 --EbNodB 100 --cp 0.004 --pilot_eq --eq_ls --ber_test --g_file g_mpp.f32
    
    ./rx.sh model05/checkpoints/checkpoint_epoch_100.pth rx_100dB_mpp.f32 /dev/null --pilots --pilot_eq --cp 0.004 --plots --time_offset -16 --coarse_mag --ber_test z_100dB.f32
    

    You can listen to the modulated OFDM waveform over the MPP channel simulation with:

    play -r 8k -e float -b 32 -c 2 rx_100dB_mpp.f32 sinc 0.3-2.7k
    

    Lets add some channel impairments:

    ./inference.sh model05/checkpoints/checkpoint_epoch_100.pth wav/all.wav /dev/null --rate_Fs --pilots --write_rx rx_0dB_mpp.f32 --EbNodB 0 --cp 0.004 --pilot_eq --eq_ls --ber_test --g_file g_mpp.f32
    
    ./rx.sh model05/checkpoints/checkpoint_epoch_100.pth rx_0dB_mpp.f32 /dev/null --pilots --pilot_eq --cp 0.004 --plots --time_offset -16 --coarse_mag --ber_test z_100dB.f32
    

    Which gives us a BER of 0.172, about 1.5dB from the ideal Rayleigh multipath channel BER of 0.15 (which the MPP model approximates).

Over the Air/Over the Cable (OTA/OTC)

  1. Example of ota_test.sh script. ota_test.sh -x generates tx.wav which contains the simulated SSB and radae modem signals ready to run through a HF radio. We add noise to create rx.wav, then use ota_test.sh -r to generate the demodulated audio files rx_ssb.wav and rx_radae.wav:

    ./ota_test.sh wav/peter.wav -x 
    ~/codec2-dev/build_linux/src/ch tx.wav - --No -20 | sox -t .s16 -r 8000 -c 1 - rx.wav
    ./ota_test.sh -r rx.wav
    aplay rx_ssb.wav rx_radae.wav
    
  2. Testing OTA over HF channels. Using my IC7200 as the Tx station:

    ./ota_test.sh wav/david_vk5dgr.wav -g 6 -t -d -f 14236
    

    The -g 6 is the SSB compressor gain (default 6 so in this case optional); this can be adjusted by experiment, e.g. listening to the tx.wav file, and looking for signs of a compressed waveform on Audacity. To receive the signal I tune into a convenient KiwiSDR, and manually start recording when my radio starts transmitting. I stop recording when I hear the transmission end. This will result in a wave file being downloaded. It's a good idea to trim any excess off the start and end of the rx wave file. It can be decoded with:

    ./ota_test.sh -d -r ~/Downloads/kiwisdr_usb.wav
    

    The output will be a ~/Downloads/kiwisdr_usb_radae.wav and ~/Downloads/kiwisdr_usb_ssb.wav, which you can listen to and compare, ~/Downloads/kiwisdr_usb_spec.png is the spectrogram. The C/No will be estimated and displayed but this is unreliable at present for non-AWGN channels. The ota_test.sh script is capable of automatically recording from KiwiSDRs, however this code hasn't been debugged yet.

Streaming

radae_rx.py is s streaming receiver that accepts IQ samples on stdin, and outputs z vectors on stdout. To listen to an example decode:

./inference.sh model17/checkpoints/checkpoint_epoch_100.pth wav/brian_g8sez.wav /dev/null --rate_Fs --pilots --pilot_eq --eq_ls --cp 0.004 --bottleneck 3 --write_rx rx.f32
cat rx.f32 | python3 radae_rx.py model17/checkpoints/checkpoint_epoch_100.pth | build/src/lpcnet_demo -fargan-synthesis - - | aplay -f S16_LE -r 16000

To run just the core streaming decoder:

cat rx.f32 | python3 radae_rx.py model17/checkpoints/checkpoint_epoch_100.pth > features_rx_out.f32

Full RADAE Streaming Rx in real time (fom off air audio samples to speaker):

cd ~/radae
cat rx.f32 | python3 radae_rx.py model17/checkpoints/checkpoint_epoch_100.pth -v 1 | ./build/src/lpcnet_demo -fargan-synthesis - - | aplay -f S16_LE -r 16000

Ctest that measures % CPU used:

cd ~/radae/build
ctest -V -R radae_rx_fargan
<snip>
run time:  6.41 duration:  9.82 percent CPU: 65.26

Profiling example

Total run time for 50 second all/wav:

ctest -R radae_rx_dfdt
time cat rx.f32 | python3 radae_rx.py model17/checkpoints/checkpoint_epoch_100.pth -v 0 --no_stdout

Profiling each function, using shorter wave file:

ctest -V -R radae_rx_basic
cat rx.f32 | python3 -m cProfile -s time radae_rx.py model17/checkpoints/checkpoint_epoch_100.pth -v 0 --no_stdout | more

Training

This section is optional - pre-trained models that run on a standard laptop CPU are available for experimenting with RADAE. If you wish to perform training, a serious NVIDIA GPU is required - the author used a RTX4090.

  1. Generate a training features file using your speech training database training_input.pcm, we used 200 hours of speech from open source databases:

    ./lpcnet_demo -features training_input.pcm training_features_file.f32
    
  2. Vanilla fixed Eb/No:

    python3 ./train.py --cuda-visible-devices 0 --sequence-length 400 --batch-size 512 --epochs 100 --lr 0.003 --lr-decay-factor 0.0001 --plot_loss training_features_file.f32 model_dir_name
    
  3. Rate Rs with multipath, over range of Eb/No:

    python3 ./train.py --cuda-visible-devices 0 --sequence-length 400 --batch-size 512 --epochs 100 --lr 0.003 --lr-decay-factor 0.0001 ~/Downloads/tts_speech_16k_speexdsp.f32 model05 --mp_file h_mpp.f32 --range_EbNo --plot_loss
    
  4. Rate Fs with simulated PA:

    python3 ./train.py --cuda-visible-devices 0 --sequence-length 400 --batch-size 512 --epochs 100 --lr 0.003 --lr-decay-factor 0.0001 ~/Downloads/tts_speech_16k_speexdsp.f32 model06 --plot_loss --rate_Fs --range_EbNo
    
  5. Rate Fs with phase and freq offsets:

    python3 ./train.py --cuda-visible-devices 0 --sequence-length 400 --batch-size 512 --epochs 100 --lr 0.003 --lr-decay-factor 0.0001 ~/Downloads/tts_speech_16k_speexdsp.f32 model07 --range_EbNo --plot_loss --rate_Fs --freq_rand
    
  6. Generate loss versus Eb/No curves for a model:

    python3 ./train.py --cuda-visible-devices 0 --sequence-length 400 --batch-size 512 --epochs 1 --lr 0.003 --lr-decay-factor 0.0001 ~/Downloads/tts_speech_16k_speexdsp.f32 tmp --range_EbNo --plot_EqNo model05 --rate_Fs --initial-checkpoint model05/checkpoints/checkpoint_epoch_100.pth
    

    This runs another training epoch (results not used so saved in tmp folder), but the results won't change much as the network has converged. While training across a range of Eb/No, it gathers stats on loss against Eq/No, and plots them in a PNG and dumps a text file. The text output is useful for plotting curves from different training runs together. TODO: reconcile original Eb/No simulation parameter with latest model that also trains constellations which means symbol energy Eq is a better parameter.

    Octave can be used to plot several loss curves together:

    octave:120> radae_plots; loss_EqNo_plot("loss_models",'model05_loss_EbNodB.txt','m5_Rs_mp','model07_loss_EbNodB.txt','m7_Fs_offets','model08_loss_EbNodB.txt','m8_Fs')
    
  7. (May 2024) Training dim=80 mixed rate PAPR optimised model. Note we need the Nc=20 version of the multipath H matrix h_nc20_train_mpp.f32 as fading is aplies at rate Rs. Bottleneck 3 is a tanh() on the magnitude of the complex rate Fs time domain samples. The SNR ends up about 3dB higher, as discussed in the mixed rate/noise calibration section of the Latext doc:

    python3 ./train.py --cuda-visible-devices 0 --sequence-length 400 --batch-size 512 --epochs 100 --lr 0.003 --lr-decay-factor 0.0001 ~/Downloads/tts_speech_16k_speexdsp.f32 model19 --bottleneck 3 --h_file h_nc20_train_mpp.f32 --range_EbNo --plot_loss
    
  8. (May 2024) Training dim=40 mixed rate PAPR optimised model. Note we need the Nc=10 version of the multipath H matrix h_nc10_train_mpp.f32. Bottleneck 3 is a tanh() on the magnitude of the complex rate Fs time domain samples. We bump the range of Eb/Nos trained over by 3dB --range_EbNo_start -3 as a 10 carrier waveform will have 3dB more energy per symbol.

    python3 ./train.py --cuda-visible-devices 0 --sequence-length 400 --batch-size 512 --epochs 100 --lr 0.003 --lr-decay-factor 0.0001 ~/Downloads/tts_speech_16k_speexdsp.f32 model18 --latent-dim 40 --bottleneck 3 --h_file h_nc10_train_mpp.f32 --range_EbNo_start -3 --range_EbNo --plot_loss
    
  9. (Aug 2024) Training model with auxillary/embedded data at 25 bits/s:

    python3 train.py --cuda-visible-devices 0 --sequence-length 400 --batch-size 512 --epochs 100 --lr 0.003 --lr-decay-factor 0.0001 ~/Downloads/tts_speech_16k_speexdsp.f32 model19_check3 --bottleneck 3 --h_file h_nc20_train_mpp.f32 --range_EbNo --plot_loss --auxdata
    

Models & samples

A log of models trained by the author.

Model Description Train at Samples
model01 trained at Eb/No 0 dB Rs -
model02 trained at Eb/No 10 dB Rs -
model03 --range_EbNo -2 ... 13 dB, modified sqrt loss Rs -
model04 --range_EbNo -2 ... 13 dB, orginal loss, noise might be 3dB less after calibration Rs -
model05 --range_EbNo, --mp_file h_mpp.f32, sounds good on MPP and AWGN at a range of SNR - no pops Rs 240221_m5_Rs_mp
model06 --range_EbNo, --rate_Fs, trained on AWGN with PA model, PAPR about 1dB, OK at a range of Eb/No Fs 240223_m6_Fs_papr
model07 --range_EbNo, -6 ... 14, --rate_Fs, AWGN freq, phase, gain offsets, some degredation at 0dB Fs 240301_m7_Fs_offets
model08 --range_EbNo, -6 ... 14, --rate_Fs, AWGN no offsets (vanilla rate Fs), similar to model 05 Fs 240301_m8_Fs
model05 practical OFDM with 4ms CP and pilots, increased Rs', MPP, 4dB sync loss, speech dropping in and out Fs 240319_m5_Fs_mp
model05 practical OFDM with 120ms modem frame, 4ms CP and pilots, reduced Rs', 1dB improvement, mooneer sample Fs 240320_m5_Fs
model05 HF OTA tests of up to 2000km, including weak signal, EMI, NVIS Fs 240326_ota_hf
model09 repeat of model05 as a sanity check, similar loss v Eq/No Rs
model10 First attempt at dim=40 1D bottleneck, AWGN, poor audio quality, relatively high loss v Eq/No, square constellation Rs
model11 dim=40 with 2D bottleneck #1, AWGN, good audio quality, similar to model05, good loss v Eq/No, circular constellation Rs
model12 dim=40 with 2D bottleneck #2, AWGN, a more sensible --range_EbNo_start 0, improved loss v Eq/No, circular constellation Rs
model13 dim=80 with 2D bottleneck 3 on rate Fs, AWGN, 0.5db PAPR, loss > m5, a few dB poorer at low SNR, very similar at high SNR Fs
model14 dim=80 with 2D bottleneck 3 on rate Fs, 10 hour --h_file h_nc20_test.f32 --range_EbNo_start 0, 0.7dB PAPR, "accident" as it introduces phase distortion with no EQ, but does a reasonable job (however speech quality < m5), handles phase and small freq offsets with no pilots, worth exploring further Fs
model15 repeat of model05/09 with 250 hour --h_file h_nc20_train_mpp.f32, after refactoring dataloader, loss v epoch curve v close to model09, ep 100 loss 0.150 Rs
model16 repeat of model05/09 with 10 hour --h_file h_nc20_test.f32, testing short h file, ep 100 loss 0.149 Rs
model17 --bottleneck 3 --h_file h_nc20_train_mpp.f32 mixed rate Rs with time domain bottelneck 3, ep 100 loss 0.112 Rs 240601_m17
model18 --latent-dim 40 --bottleneck 3 --h_file h_nc10_train_mpp.f32 --range_EbNo_start -3 like model17 but dim 40, ep 100 loss 0.123 Rs 240601_m18
model05_auxdata model05 (rate Rs h_nc20_train_mpp.f32) with --auxdata 100 bits/s see PR#13 Rs -
model05_auxdata25 model05 (rate Rs h_nc20_train_mpp.f32) with --auxdata 25 bits/s see PR#13 Rs -
model19 like model17 but with 25 bits/s auxdata, ep 100 loss 0.124 Fs -
model19_check3 model19 but loss function weighting for data symbols reduced fom 1/18 to 0.5/18, which reduced vocoder feature loss with just a small impact on BER. Loss at various op points and channels very close to model17 Fs -
model20 model19_check3 but loss function weighting for pitch and corr doubled, attempt to improve rick samples. Didn't help. Fs -
model21 very based fixed EbNodB model like model02 but at 20dB at epoch 30, produced good quality speech on rick, loss 0.02, but not a practical solution Rs -
model22 very based fixed EbNodB model like model02 but at 10dB at epoch 30, rick sample starting to get tonal/pitch shift artefact, in between, loss 0.045 Rs -

Note the samples are generated with evaluate.sh, which runs inference at rate Fs. even if (e.g model 05), trained at rate Rs.

Specifications

Using model19_check3 waveform:

Parameter Value Comment
Audio Bandwith 100-8000 Hz
RF Bandwidth 1500 Hz (-6dB)
Tx Peak Average Power Ratio < 1dB
Threshold SNR -3dB AWGN channel, 3000 Hz noise bandwidth
Threshold C/No 32 dBHz AWGN channel
Threshold SNR 0dB MPP channel (1Hz Doppler, 2ms path delay), 3000 Hz noise bandwidth
Threshold C/No 35 dBHz MPP channel
Frame size 120ms algorithmic latency
Modulation OFDM discrete time, continously valued symbols
Vocoder FARGAN low complexity ML vocoder
Total Payload Symbol rate 2000 Hz payload data symbols, all carriers combined
Number of Carriers 30
Per Carrier Symbol rate 50 Hz
Cyclic Prefix 4ms
Worst case channel MPD: 2Hz Doppler spread, 4ms path delay Two path Watterson model
Mean acquisition time < 1.5s 0dB SNR MPP channel
Acquisition frequency range +/- 50 Hz
Acquisition co-channel interference tolerence -3dBC Interfering sine wave level, <2s mean acquisition time
Auxilary text channel 25 bits/s currently used for sync
SNR measurement No
Tx and Rx sample clock offset 200ppm e.g. Tx sample clock 8000 Hz, Rx sample clock 8001 Hz

Web based Stored File Processing

This section contains some notes on setting up a web server to run ota_test.sh. The idea is to make it easier for non-Linux users to contribute to the stored file test program. The general idea is a CGI script interfaces to ota_test.sh to perform the Tx and Rx processing. We configure the web server so that the HTML forms and CGI scripts run in ~/public_html. The notes below are for Apache on Ubuntu 22.

  1. The Python packages need to be available system wide , so www-data can use them:

    sudo pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
    sudo -u www-data python3 -c "import torch"
    
    sudo pip3 install matplotlib
    sudo -u www-data python3 -c "import matplotlib"
    

    The presence of the packages can be checked by mimicing the www-data user (the last line in each step above should not fail if all is well).

  2. Configure Apache for CGI and serving pages from our ~/public_html dir.

    sudo a2enmod cgid
    sudo a2enmod userdir
    sudo systemctl restart apache2
    

    We want html and cgi to run out of ~/public_html, so permissions have to be 755 and www-data has to be added to the users group.

    mkdir ~/public_html
    chmod 755 public_html
    sudo usermod -a -G <username> www-data
    

    To let CGI scripts run from ~/public_html I placed this in my /etc/apache2/apache2.conf:

    <Directory "/home/<username>/public_html">
       Options +ExecCGI
       AddHandler cgi-script .cgi
    </Directory>  
    

    Then restart apache as above.

  3. Create sym links to HTML/CGI scripts in radae repo, this allows the script to be part of the RADAE repo:

    cd ~/public_html
    ln -s ~/radae/public_html/tx_form.html tx_form.html
    ln -s ~/radae/public_html/tx_process.cgi tx_process.cgi
    
  4. Edit the path to CODEC2_DEV in radae/public_html/tx_process.cgi:

    my_env["CODEC2_DEV"] = "/home/<username>/codec2-dev"
    
  5. Note that files created when the CGI process run (e.g. /tmp/input.wav) get put in a sandbox rather than directly in /tmp. This is a systemd security feature. You can find the files with:

    sudo find /tmp -name input.wav | xargs sudo ls -ld
    -rw-r--r-- 1 www-data www-data 3918458 Aug 15 15:28 /tmp/systemd-private-2fcf85ad243b4da08d79d2e27e0375af-apache2.service-vDE2Dg/tmp/input.wav
    
  6. Apache error log, good for viewing ota_test.sh progress and spotting any issues:

    tail -f /var/log/apache2/error.log
    

Real Time PTT

WIP notes

Real Time decode using KiwiSDR

  1. Install pulse audio null module
    pactl load-module module-null-sink sink_name=vsink
    
  2. Start your web browser, and open a tab to a KiwiSDR.
  3. Open pavucontrol, Playback tab, send web browser sound to NULL module. Audio from web browser should go silent.
  4. We take the audio from the null device monitor output for the input to the RADAE Rx:
    parec --device=vsink.monitor --rate=8000 --channels=1 | python3 int16tof32.py --zeropad | python3 radae_rx.py model19_check3/checkpoints/checkpoint_epoch_100.pth -v 2 --auxdata | ./build/src/lpcnet_demo -fargan-synthesis - - | aplay -f S16_LE -r 16000
    
  5. Try transmitting a RADAE signal:
    ./ota_test.sh -t radae_test.raw -d -f 7175
    
    Where radae_test.raw is a RADAE-only sample (i.e. without the chirp and SSB, copied from a temp file generated by ota_test.sh -x). If you can't open the SSB radio playback device to radio try closing pavucontrol.
  6. Other useful pulse audio commands:
    pactl list sinks short
    pactl list sources short
    pactl list modules
    

Real Time Tx from mic to SSB radio

Work in progress notes, needs a clean up once this settles down.

  1. Install null module as above. Using Settings redirect system sounds to null so default analog sound output is free.

  2. Test headset mic to audio:

    parec --device=17 --rate=16000 --channels=1 --latency=1024 | pacat --device=9 --rate=16000 --channels=1 --latency=1024
    

    However this is unreliable, doesn't always start.

  3. Input from headset mic, save to file.

    arecord --device "plughw:CARD=LX3000,DEV=0" -f S16_LE -c 1 -r 16000 | ./build/src/lpcnet_demo -features - - | python3 radae_tx.py model19_check3/checkpointscheckpoint_epoch_100.pth --auxdata | python3 f32toint16.py --real --scale 8192 > t.raw
    
  4. Test decode with:

    cat t.raw | python3 int16tof32.py --zeropad | python3 radae_rx.py model19_check3/checkpoints/checkpoint_epoch_100.pth -v 2 --auxdata | ./build/src/lpcnet_demo -fargan-synthesis - - | aplay -f S16_LE -r 16000
    
  5. Real time transmit:

    arecord --device "plughw:CARD=LX3000,DEV=0" -f S16_LE -c 1 -r 16000 | ./build/src/lpcnet_demo -features - - | python3 radae_tx.py model19_check3/checkpoints/checkpoint_epoch_100.pth --auxdata | python3 f32toint16.py --real --scale 8192 | aplay -f S16_LE --device "plughw:CARD=CODEC,DEV=0
    

    I keyed radio manually. I recorded the transmission on a local SDR, then decoded with:

    sox ~/Downloads/sdr.ironstonerange.com_2024-08-19T22_03_13Z_7185.00_lsb.wav -t .s16 -r 8000 -c 1 - | python3 int16tof32.py --zeropad | python3 radae_rx.py model19_check3/checkpoints/checkpoint_epoch_100.pth -v 2 --auxdata | ./build/src/lpcnet_demo -fargan-synthesis - - | aplay -f S16_LE -r 16000