-
Notifications
You must be signed in to change notification settings - Fork 4
/
bbfm_inference.py
142 lines (116 loc) · 5.74 KB
/
bbfm_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
/* Copyright (c) 2024 modifications for radio autoencoder project
by David Rowe */
/* Copyright (c) 2022 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
import os
import argparse
import numpy as np
import torch
from radae import BBFM, distortion_loss
parser = argparse.ArgumentParser()
parser.add_argument('model_name', type=str, help='path to model in .pth format')
parser.add_argument('features', type=str, help='path to input feature file in .f32 format')
parser.add_argument('features_hat', type=str, help='path to output feature file in .f32 format')
parser.add_argument('--latent-dim', type=int, help="number of symbols produces by encoder, default: 80", default=80)
parser.add_argument('--cuda-visible-devices', type=str, help="set to 0 to run using GPU rather than CPU", default="")
parser.add_argument('--write_latent', type=str, default="", help='path to output file of latent vectors z[latent_dim] in .f32 format')
parser.add_argument('--CNRdB', type=float, default=100, help='FM demod input CNR in dB')
parser.add_argument('--passthru', action='store_true', help='copy features in to feature out, bypassing ML network')
parser.add_argument('--h_file', type=str, default="", help='path to rate Rs fading channel magnitude samples, rate Rs time steps by Nc=1 carriers .f32 format')
parser.add_argument('--write_CNRdB', type=str, default="", help='path to output file of CNRdB per sample after fading in .f32 format')
parser.add_argument('--loss_test', type=float, default=0.0, help='compare loss to arg, print PASS/FAIL')
args = parser.parse_args()
# set visible devices
os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda_visible_devices
# device
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
latent_dim = args.latent_dim
# not exposed
nb_total_features = 36
num_features = 20
num_used_features = 20
# load model from a checkpoint file
model = BBFM(num_features, latent_dim, args.CNRdB)
checkpoint = torch.load(args.model_name, map_location='cpu')
model.load_state_dict(checkpoint['state_dict'], strict=False)
checkpoint['state_dict'] = model.state_dict()
# load features from file
feature_file = args.features
features_in = np.reshape(np.fromfile(feature_file, dtype=np.float32), (1, -1, nb_total_features))
nb_features_rounded = model.num_10ms_times_steps_rounded_to_modem_frames(features_in.shape[1])
features = features_in[:,:nb_features_rounded,:]
features = features[:, :, :num_used_features]
features = torch.tensor(features)
print(f"Processing: {nb_features_rounded} feature vectors")
# default rate Rb multipath model H=1
Rb = model.Rb
Nc = 1
num_timesteps_at_rate_Rs = model.num_timesteps_at_rate_Rs(nb_features_rounded)
H = torch.ones((1,num_timesteps_at_rate_Rs,Nc))
# user supplied rate Rs multipath model, sequence of H magnitude samples
if args.h_file:
H = np.reshape(np.fromfile(args.h_file, dtype=np.float32), (1, -1, Nc))
print(H.shape, num_timesteps_at_rate_Rs)
if H.shape[1] < num_timesteps_at_rate_Rs:
print("Multipath H file too short")
quit()
H = H[:,:num_timesteps_at_rate_Rs,:]
H = torch.tensor(H)
if __name__ == '__main__':
if args.passthru:
features_hat = features_in.flatten()
features_hat.tofile(args.features_hat)
quit()
# push model to device and run test
model.to(device)
features = features.to(device)
H = H.to(device)
output = model(features,H)
# Lets check actual SNR at output of FM demod
tx_sym = output["z_hat"].cpu().detach().numpy()
S = np.mean(np.abs(tx_sym)**2)
N = np.mean(output["sigma"].cpu().detach().numpy()**2)
SNRdB_meas = 10*np.log10(S/N)
print(f"SNRdB Measured: {SNRdB_meas:6.2f}")
features_hat = output["features_hat"][:,:,:num_used_features]
features_hat = torch.cat([features_hat, torch.zeros_like(features_hat)[:,:,:16]], dim=-1)
features_hat = features_hat.cpu().detach().numpy().flatten().astype('float32')
features_hat.tofile(args.features_hat)
loss = distortion_loss(features,output['features_hat']).cpu().detach().numpy()[0]
print(f"loss: {loss:5.3f}")
if args.loss_test > 0.0:
if loss < args.loss_test:
print("PASS")
else:
print("FAIL")
# write output symbols (latent vectors)
if len(args.write_latent):
z_hat = output["z_hat"].cpu().detach().numpy().flatten().astype('float32')
z_hat.tofile(args.write_latent)
# write CNRdB after fading
if len(args.write_CNRdB):
CNRdB = output["CNRdB"].cpu().detach().numpy().flatten().astype('float32')
CNRdB.tofile(args.write_CNRdB)