-
Notifications
You must be signed in to change notification settings - Fork 4
/
bbfm_rx.py
83 lines (65 loc) · 3.25 KB
/
bbfm_rx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""
BBFM stand alone Rx, takes baseband symbols and outputs features.
/* Copyright (c) 2024 David Rowe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
import os
import argparse
import numpy as np
import torch
from radae import BBFM, distortion_loss
parser = argparse.ArgumentParser()
parser.add_argument('model_name', type=str, help='path to model in .pth format')
parser.add_argument('z_hat', type=str, help='path to input symbol (latent vectors) file in .f32 format')
parser.add_argument('features_hat', type=str, help='path to output feature file in .f32 format')
parser.add_argument('--latent-dim', type=int, help="number of symbols produces by encoder, default: 80", default=80)
parser.add_argument('--cuda-visible-devices', type=str, help="set to 0 to run using GPU rather than CPU", default="")
args = parser.parse_args()
# set visible devices
os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda_visible_devices
# device
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
latent_dim = args.latent_dim
# not exposed
nb_total_features = 36
num_features = 20
num_used_features = 20
# load model from a checkpoint file
model = BBFM(num_features, latent_dim, CNRdB=100)
checkpoint = torch.load(args.model_name, map_location='cpu')
model.load_state_dict(checkpoint['state_dict'], strict=False)
checkpoint['state_dict'] = model.state_dict()
# dataloader
z_hat = np.reshape(np.fromfile(args.z_hat, dtype=np.float32), (1, -1, args.latent_dim))
nb_frames_rounded = model.num_10ms_times_steps_rounded_to_modem_frames(z_hat.shape[1])
z_hat = z_hat[:,:nb_frames_rounded,:]
z_hat = torch.tensor(z_hat)
print(f"Processing: {nb_frames_rounded} modem frames")
if __name__ == '__main__':
# push model to device and run test
model.to(device)
z_hat = z_hat.to(device)
features_hat = model.receiver(z_hat)
features_hat = torch.cat([features_hat, torch.zeros_like(features_hat)[:,:,:16]], dim=-1)
features_hat = features_hat.cpu().detach().numpy().flatten().astype('float32')
features_hat.tofile(args.features_hat)