-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtrain_scannet.sh
executable file
·53 lines (47 loc) · 2.89 KB
/
train_scannet.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#!/bin/bash
#----------------------------------------------------------------------#
# INITIALIZATION #
#----------------------------------------------------------------------#
# This is the configuration we used for training our best DeepViewAgg
# model on ScanNet, with results as stated in our paper
# https://arxiv.org/abs/2204.07548
# Select you GPU
I_GPU=0
DATA_ROOT="/path/to/your/dataset/root/directory" # set your dataset root directory, where the data was/will be downloaded
EXP_NAME="My_awesome_ScanNet_experiment" # whatever suits your needs
TASK="segmentation"
MODELS_CONFIG="${TASK}/multimodal/sparseconv3d" # family of multimodal models using the sparseconv3d backbone
MODEL_NAME="Res16UNet34-PointPyramid-early-ade20k-interpolate" # specific model name
DATASET_CONFIG="${TASK}/multimodal/scannet-sparse"
TRAINING="scannet_benchmark/minkowski-pretrained-pyramid-0" # training configuration for discriminative learning rate on the model
EPOCHS=300
BATCH_SIZE=3 # 4 fits in a 32G V100. Can be increased at inference time, of course
WORKERS=4 # adapt to your machine
BASE_LR=0.1 # initial learning rate
LR_SCHEDULER='exponential' # learning rate scheduler for 60 epochs
EVAL_FREQUENCY=10 # frequency at which metrics will be computed on Val. The less the faster the training but the less points on your validation curves
SUBMISSION=False # True if you want to generate files for a submission to the ScanNet 3D semantic segmentation benchmark
CHECKPOINT_DIR='' # optional path to an already-existing checkpoint. If provided, the training will resume where it was left
export SPARSE_BACKEND=torchsparse
# export SPARSE_BACKEND=minkowski
#----------------------------------------------------------------------#
# RUN #
#----------------------------------------------------------------------#
python -W ignore train.py \
data=${DATASET_CONFIG} \
models=${MODELS_CONFIG} \
model_name=${MODEL_NAME} \
task=${TASK} \
training=${TRAINING} \
lr_scheduler=${LR_SCHEDULER} \
eval_frequency=${EVAL_FREQUENCY} \
data.dataroot=${DATA_ROOT} \
training.cuda=${I_GPU} \
training.batch_size=${BATCH_SIZE} \
training.epochs=${EPOCHS} \
training.num_workers=${WORKERS} \
training.optim.base_lr=${BASE_LR} \
training.wandb.log=True \
training.wandb.name=${EXP_NAME} \
tracker_options.make_submission=${SUBMISSION} \
training.checkpoint_dir=${CHECKPOINT_DIR}