-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
55 lines (44 loc) · 1.65 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright 2024 Kiel University
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from torchvision import transforms
from torch.utils.data import Dataset
import os
import PIL
from torchvision import transforms
class VimeoDataset(Dataset):
def __init__(self, video_dir, text_split, transform):
self.video_dir = video_dir
self.text_split = text_split
if transform is None:
self.transform = transforms.Compose([
transforms.ToTensor()
])
else:
self.transform = transform
self.frames = []
with open(self.text_split, 'r') as f:
filenames = f.readlines()
f.close()
final_filenames = []
for i in filenames:
final_filenames.append(os.path.join(self.video_dir, i.split('\n')[0]))
for f in final_filenames:
try:
frames = [os.path.join(f, i) for i in os.listdir(f)]
except:
continue
# make sure images are in order, i.e. im1.png, im2.png, im3.png
frames = sorted(frames)
# make sure there are only 3 images in the Vimeo-90k triplet's folder for it to be a valid dataset sample
self.frames.append(frames[0])
self.frames.append(frames[1])
self.frames.append(frames[2])
def __len__(self):
return len(self.frames)
def __getitem__(self, idx):
img = PIL.Image.open(self.frames[idx]).convert("RGB")
if self.transform:
img = self.transform(img)
return img