-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSeismicSense_datagen.py
451 lines (358 loc) · 18.5 KB
/
SeismicSense_datagen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import tensorflow as tf
import numpy as np
from scipy import signal
import h5py
#******************************Training and validation data preprocessing**************************************************
def normalize( data, mode = 'max'):
'Normalize waveforms in each batch'
data -= np.mean(data, axis=0, keepdims=True)
if mode == 'max':
max_data = np.max(data, axis=0, keepdims=True)
assert(max_data.shape[-1] == data.shape[-1])
max_data[max_data == 0] = 1
data /= max_data
elif mode == 'std':
std_data = np.std(data, axis=0, keepdims=True)
assert(std_data.shape[-1] == data.shape[-1])
std_data[std_data == 0] = 1
data /= std_data
return data
def scale_amplitude( data, rate):
'Scale amplitude or waveforms'
tmp = np.random.uniform(0, 1)
if tmp < rate:
data *= np.random.uniform(1, 3)
elif tmp < 2*rate:
data /= np.random.uniform(1, 3)
return data
def drop_channel( data, snr, rate):
'Randomly replace values of one or two components to zeros in earthquake data'
data = np.copy(data)
if np.random.uniform(0, 1) < rate and all(snr >= 10.0):
c1 = np.random.choice([0, 1])
c2 = np.random.choice([0, 1])
c3 = np.random.choice([0, 1])
if c1 + c2 + c3 > 0:
data[..., np.array([c1, c2, c3]) == 0] = 0
return data
def drop_channel_noise( data, rate):
'Randomly replace values of one or two components to zeros in noise data'
data = np.copy(data)
if np.random.uniform(0, 1) < rate:
c1 = np.random.choice([0, 1])
c2 = np.random.choice([0, 1])
c3 = np.random.choice([0, 1])
if c1 + c2 + c3 > 0:
data[..., np.array([c1, c2, c3]) == 0] = 0
return data
def add_gaps( data, rate):
'Randomly add gaps (zeros) of different sizes into waveforms'
data = np.copy(data)
gap_start = np.random.randint(0, 4000)
gap_end = np.random.randint(gap_start, 5500)
if np.random.uniform(0, 1) < rate:
data[gap_start:gap_end,:] = 0
return data
def add_noise( data, snr, rate):
'Randomly add Gaussian noie with a random SNR into waveforms'
data_noisy = np.empty((data.shape))
if np.random.uniform(0, 1) < rate and all(snr >= 10.0):
data_noisy = np.empty((data.shape))
data_noisy[:, 0] = data[:,0] + np.random.normal(0, np.random.uniform(0.01, 0.15)*max(data[:,0]), data.shape[0])
data_noisy[:, 1] = data[:,1] + np.random.normal(0, np.random.uniform(0.01, 0.15)*max(data[:,1]), data.shape[0])
data_noisy[:, 2] = data[:,2] + np.random.normal(0, np.random.uniform(0.01, 0.15)*max(data[:,2]), data.shape[0])
else:
data_noisy = data
return data_noisy
def adjust_amplitude_for_multichannels( data):
'Adjust the amplitude of multichaneel data'
tmp = np.max(np.abs(data), axis=0, keepdims=True)
assert(tmp.shape[-1] == data.shape[-1])
if np.count_nonzero(tmp) > 0:
data *= data.shape[-1] / np.count_nonzero(tmp)
return data
def label( a=0, b=20, c=40):
'Used for triangolar labeling'
z = np.linspace(a, c, num = 2*(b-a)+1)
y = np.zeros(z.shape)
y[z <= a] = 0
y[z >= c] = 0
first_half = np.logical_and(a < z, z <= b)
y[first_half] = (z[first_half]-a) / (b-a)
second_half = np.logical_and(b < z, z < c)
y[second_half] = (c-z[second_half]) / (c-b)
return y
def add_event( data, addp, adds, coda_end, snr, rate):
'Add a scaled version of the event into the empty part of the trace'
added = np.copy(data)
additions = None
spt_secondEV = None
sst_secondEV = None
if addp and adds:
s_p = adds - addp
if np.random.uniform(0, 1) < rate and all(snr>=10.0) and (data.shape[0]-s_p-21-coda_end) > 20:
secondEV_strt = np.random.randint(coda_end, data.shape[0]-s_p-21)
scaleAM = 1/np.random.randint(1, 10)
space = data.shape[0]-secondEV_strt
added[secondEV_strt:secondEV_strt+space, 0] += data[addp:addp+space, 0]*scaleAM
added[secondEV_strt:secondEV_strt+space, 1] += data[addp:addp+space, 1]*scaleAM
added[secondEV_strt:secondEV_strt+space, 2] += data[addp:addp+space, 2]*scaleAM
spt_secondEV = secondEV_strt
if spt_secondEV + s_p + 21 <= data.shape[0]:
sst_secondEV = spt_secondEV + s_p
if spt_secondEV and sst_secondEV:
additions = [spt_secondEV, sst_secondEV]
data = added
return data, additions
def shift_event( data, addp, adds, coda_end, snr, rate):
'Randomly rotate the array to shift the event location'
org_len = len(data)
data2 = np.copy(data)
addp2 = adds2 = coda_end2 = None;
if np.random.uniform(0, 1) < rate:
nrotate = int(np.random.uniform(1, int(org_len - coda_end)))
data2[:, 0] = list(data[:, 0])[-nrotate:] + list(data[:, 0])[:-nrotate]
data2[:, 1] = list(data[:, 1])[-nrotate:] + list(data[:, 1])[:-nrotate]
data2[:, 2] = list(data[:, 2])[-nrotate:] + list(data[:, 2])[:-nrotate]
if addp+nrotate >= 0 and addp+nrotate < org_len:
addp2 = addp+nrotate;
else:
addp2 = None;
if adds+nrotate >= 0 and adds+nrotate < org_len:
adds2 = adds+nrotate;
else:
adds2 = None;
if coda_end+nrotate < org_len:
coda_end2 = coda_end+nrotate
else:
coda_end2 = org_len
if addp2 and adds2:
data = data2;
addp = addp2;
adds = adds2;
coda_end= coda_end2;
return data, addp, adds, coda_end
def pre_emphasis( params, data, pre_emphasis=0.97):
'apply the pre_emphasis'
for ch in range(params['n_channels']):
bpf = data[:, ch]
data[:, ch] = np.append(bpf[0], bpf[1:] - pre_emphasis * bpf[:-1])
return data
def data_generation(params, list_IDs,tag):
'read the waveforms'
lengthT=len(list_IDs)
indexes = np.arange(lengthT)
if params['shuffle'] == True:
np.random.shuffle(indexes)
if params['augmentation']== True:
indexes = np.append(indexes, indexes)
lengthT=2*lengthT
list_IDs_temp = [list_IDs[k] for k in indexes]
X = np.zeros((lengthT, params['dim'], params['n_channels']))
y1 = np.zeros((lengthT, params['dim'], 1))
y2 = np.zeros((lengthT, params['dim'], 1))
y3 = np.zeros((lengthT, params['dim'], 1))
fl = h5py.File(params['file_name'], 'r')
# Generate data
for i, ID in enumerate(list_IDs_temp):
additions = None
dataset = fl.get('data/'+str(ID))
if ID.split('_')[-1] == 'EV':
data = np.array(dataset)
spt = int(dataset.attrs['p_arrival_sample']);
sst = int(dataset.attrs['s_arrival_sample']);
coda_end = int(dataset.attrs['coda_end_sample']);
snr = dataset.attrs['snr_db'];
elif ID.split('_')[-1] == 'NO':
data = np.array(dataset)
## augmentation
if params['augmentation'] == True:
if i <= lengthT//2:
if params['shift_event_r'] and dataset.attrs['trace_category'] == 'earthquake_local':
data, spt, sst, coda_end = shift_event(data, spt, sst, coda_end, snr, params['shift_event_r']/2);
if params['norm_mode']:
data = normalize(data, params['norm_mode'])
else:
if dataset.attrs['trace_category'] == 'earthquake_local':
if params['shift_event_r']:
data, spt, sst, coda_end = shift_event(data, spt, sst, coda_end, snr, params['shift_event_r']);
if params['add_event_r']:
data, additions = add_event(data, spt, sst, coda_end, snr, params['add_event_r']);
if params['add_noise_r']:
data = add_noise(data, snr, params['add_noise_r']);
if params['drop_channel_r']:
data = drop_channel(data, snr, params['drop_channel_r']);
data = adjust_amplitude_for_multichannels(data)
if params['scale_amplitude_r']:
data = scale_amplitude(data, params['scale_amplitude_r']);
if params['pre_emphasis']:
data = pre_emphasis(params, data)
if params['norm_mode']:
data = normalize(data, params['norm_mode'])
elif dataset.attrs['trace_category'] == 'noise':
if params['drop_channel_r']:
data = drop_channel_noise(data, params['drop_channel_r']);
if params['add_gap_r']:
data = add_gaps(data, params['add_gap_r'])
if params['norm_mode']:
data = normalize(data, params['norm_mode'])
elif params['augmentation'] == False:
if params['shift_event_r'] and dataset.attrs['trace_category'] == 'earthquake_local':
data, spt, sst, coda_end = shift_event(data, spt, sst, coda_end, snr, params['shift_event_r']/2);
if params['norm_mode']:
data = normalize(data, params['norm_mode'])
X[i, :, :] = data
## labeling
if dataset.attrs['trace_category'] == 'earthquake_local':
if params['label_type'] == 'gaussian':
sd = None
if spt and sst:
sd = sst - spt
if sd and sst:
if sst+int(0.4*sd) <= params['dim']:
y1[i, spt:int(sst+(0.4*sd)), 0] = 1
else:
y1[i, spt:params['dim'], 0] = 1
if spt and (spt-20 >= 0) and (spt+20 < params['dim']):
y2[i, spt-20:spt+20, 0] = np.exp(-(np.arange(spt-20,spt+20)-spt)**2/(2*(10)**2))[:params['dim']-(spt-20)]
elif spt and (spt-20 < params['dim']):
y2[i, 0:spt+20, 0] = np.exp(-(np.arange(0,spt+20)-spt)**2/(2*(10)**2))[:params['dim']-(spt-20)]
if sst and (sst-20 >= 0) and (sst-20 < params['dim']):
y3[i, sst-20:sst+20, 0] = np.exp(-(np.arange(sst-20,sst+20)-sst)**2/(2*(10)**2))[:params['dim']-(sst-20)]
elif sst and (sst-20 < params['dim']):
y3[i, 0:sst+20, 0] = np.exp(-(np.arange(0,sst+20)-sst)**2/(2*(10)**2))[:params['dim']-(sst-20)]
if additions:
add_sd = None
add_spt = additions[0];
add_sst = additions[1];
if add_spt and add_sst:
add_sd = add_sst - add_spt
if add_sd and add_sst+int(0.4*add_sd) <= params['dim']:
y1[i, add_spt:int(add_sst+(0.4*add_sd)), 0] = 1
else:
y1[i, add_spt:params['dim'], 0] = 1
if add_spt and (add_spt-20 >= 0) and (add_spt+20 < params['dim']):
y2[i, add_spt-20:add_spt+20, 0] = np.exp(-(np.arange(add_spt-20,add_spt+20)-add_spt)**2/(2*(10)**2))[:params['dim']-(add_spt-20)]
elif add_spt and (add_spt+20 < params['dim']):
y2[i, 0:add_spt+20, 0] = np.exp(-(np.arange(0,add_spt+20)-add_spt)**2/(2*(10)**2))[:params['dim']-(add_spt-20)]
if add_sst and (add_sst-20 >= 0) and (add_sst+20 < params['dim']):
y3[i, add_sst-20:add_sst+20, 0] = np.exp(-(np.arange(add_sst-20,add_sst+20)-add_sst)**2/(2*(10)**2))[:params['dim']-(add_sst-20)]
elif add_sst and (add_sst+20 < params['dim']):
y3[i, 0:add_sst+20, 0] = np.exp(-(np.arange(0,add_sst+20)-add_sst)**2/(2*(10)**2))[:params['dim']-(add_sst-20)]
elif params['label_type'] == 'triangle':
sd = None
if spt and sst:
sd = sst - spt
if sd and sst:
if sst+int(0.4*sd) <= params['dim']:
y1[i, spt:int(sst+(0.4*sd)), 0] = 1
else:
y1[i, spt:params['dim'], 0] = 1
if spt and (spt-20 >= 0) and (spt+21 < params['dim']):
y2[i, spt-20:spt+21, 0] = label()
elif spt and (spt+21 < params['dim']):
y2[i, 0:spt+spt+1, 0] = label(a=0, b=spt, c=2*spt)
elif spt and (spt-20 >= 0):
pdif = params['dim'] - spt
y2[i, spt-pdif-1:params['dim'], 0] = label(a=spt-pdif, b=spt, c=2*pdif)
if sst and (sst-20 >= 0) and (sst+21 < params['dim']):
y3[i, sst-20:sst+21, 0] = label()
elif sst and (sst+21 < params['dim']):
y3[i, 0:sst+sst+1, 0] = label(a=0, b=sst, c=2*sst)
elif sst and (sst-20 >= 0):
sdif = params['dim'] - sst
y3[i, sst-sdif-1:params['dim'], 0] = label(a=sst-sdif, b=sst, c=2*sdif)
if additions:
add_spt = additions[0];
add_sst = additions[1];
add_sd = None
if add_spt and add_sst:
add_sd = add_sst - add_spt
if add_sd and add_sst+int(0.4*add_sd) <= params['dim']:
y1[i, add_spt:int(add_sst+(0.4*add_sd)), 0] = 1
else:
y1[i, add_spt:params['dim'], 0] = 1
if add_spt and (add_spt-20 >= 0) and (add_spt+21 < params['dim']):
y2[i, add_spt-20:add_spt+21, 0] = label()
elif add_spt and (add_spt+21 < params['dim']):
y2[i, 0:add_spt+add_spt+1, 0] = label(a=0, b=add_spt, c=2*add_spt)
elif add_spt and (add_spt-20 >= 0):
pdif = params['dim'] - add_spt
y2[i, add_spt-pdif-1:params['dim'], 0] = label(a=add_spt-pdif, b=add_spt, c=2*pdif)
if add_sst and (add_sst-20 >= 0) and (add_sst+21 < params['dim']):
y3[i, add_sst-20:add_sst+21, 0] = label()
elif add_sst and (add_sst+21 < params['dim']):
y3[i, 0:add_sst+add_sst+1, 0] = label(a=0, b=add_sst, c=2*add_sst)
elif add_sst and (add_sst-20 >= 0):
sdif = params['dim'] - add_sst
y3[i, add_sst-sdif-1:params['dim'], 0] = label(a=add_sst-sdif, b=add_sst, c=2*sdif)
elif params['label_type'] == 'box':
sd = None
if sst and spt:
sd = sst - spt
if sd and sst+int(0.4*sd) <= params['dim']:
y1[i, spt:int(sst+(0.4*sd)), 0] = 1
else:
y1[i, spt:params['dim'], 0] = 1
if spt:
y2[i, spt-20:spt+20, 0] = 1
if sst:
y3[i, sst-20:sst+20, 0] = 1
if additions:
add_sd = None
add_spt = additions[0];
add_sst = additions[1];
if add_spt and add_sst:
add_sd = add_sst - add_spt
if add_sd and add_sst+int(0.4*add_sd) <= params['dim']:
y1[i, add_spt:int(add_sst+(0.4*add_sd)), 0] = 1
else:
y1[i, add_spt:params['dim'], 0] = 1
if add_spt:
y2[i, add_spt-20:add_spt+20, 0] = 1
if add_sst:
y3[i, add_sst-20:add_sst+20, 0] = 1
fl.close()
X=X.astype('float32')
y1=y1.astype('float32')
y2=y2.astype('float32')
y3=y3.astype('float32')
np.save('/home/tza/STEAD/tza/x_EQdata_'+tag, X)
np.save('/home/tza/STEAD/tza/y_EQlabelD_'+tag, y1)
np.save('/home/tza/STEAD/tza/y_EQlabelP_'+tag, y2)
np.save('/home/tza/STEAD/tza/y_EQlabelS_'+tag, y3)
#******************************Testing data preprocessing**************************************************
def normalize_test(data, mode = 'max'):
'Normalize waveforms in each batch'
data -= np.mean(data, axis=0, keepdims=True)
if mode == 'max':
max_data = np.max(data, axis=0, keepdims=True)
assert(max_data.shape[-1] == data.shape[-1])
max_data[max_data == 0] = 1
data /= max_data
elif mode == 'std':
std_data = np.std(data, axis=0, keepdims=True)
assert(std_data.shape[-1] == data.shape[-1])
std_data[std_data == 0] = 1
data /= std_data
return data
def data_generation_test(params, list_IDs):
'readint the waveforms'
lengthT=len(list_IDs)
X = np.zeros((lengthT, params['dim'], params['n_channels']))
fl = h5py.File(params['file_name'], 'r')
# Generate data
for i, ID in enumerate(list_IDs):
if ID.split('_')[-1] == 'EV':
dataset = fl.get('data/'+str(ID))
data = np.array(dataset)
elif ID.split('_')[-1] == 'NO':
dataset = fl.get('data/'+str(ID))
data = np.array(dataset)
if params['norm_mode']:
data = normalize_test(data, params['norm_mode'])
X[i, :, :] = data
fl.close()
#X=X.astype('float32')
lable="preprocessed_test"
np.save('/home/tza/STEAD/tza/x_EQdata_'+lable, X)