-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSeismicSensequant_test.py
195 lines (155 loc) · 6.41 KB
/
SeismicSensequant_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from __future__ import print_function
from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler
from tensorflow.keras.callbacks import ReduceLROnPlateau
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow import keras
import tensorflow as tf
import numpy as np
import pandas as pd
import psutil
import matplotlib.pyplot as plt
from sklearn import utils
import pathlib
import os
import shutil
import csv
import h5py
import time
import datetime
from tensorflow.keras.models import load_model
np.seterr(divide='ignore', invalid='ignore')
from SeismicSense_utils import generate_arrays_from_file, picker, _output_writter_test, _plotter
from tqdm import tqdm
import math
import random
import sys
import statistics
os.environ['CUDA_VISIBLE_DEVICES'] ='{}'.format(2)
gpu_devices = tf.config.experimental.list_physical_devices('GPU')
for device in gpu_devices:
tf.config.experimental.set_memory_growth(device, True)
input_hdf5= '/home/tza/STEAD/tza/merged.hdf5'
output_name='test_tester'
args = {
"input_hdf5": '/home/tza/STEAD/tza/merged.hdf5',
"output_name": 'test_tester',
"detection_threshold": 0.2,
"P_threshold": 0.1,
"S_threshold": 0.1,
"number_of_plots": 5,
"estimate_uncertainty": False,
"number_of_sampling": 2,
"loss_weights": [0.05, 0.40, 0.55],
"loss_types": ['binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy'],
"input_dimention": (6000,3),
"batch_size": 100,
}
batch_size=args['batch_size']
save_dir = os.path.join(os.getcwd(), str(output_name)+'_outputs')
save_figs = os.path.join(save_dir, 'figures')
if os.path.isdir(save_dir):
shutil.rmtree(save_dir)
os.makedirs(save_figs)
test = np.load('/home/tza/STEAD/tza/x_EQdata_preprocessed_test.npy')
test_meta = np.load('/home/tza/STEAD/tza/EQtest.npy')
print('Writting results into: " ' + str(output_name)+'_outputs'+' "', flush=True)
start_training = time.time()
csvTst = open(os.path.join(save_dir,'quantized_model.csv'), 'w')
test_writer = csv.writer(csvTst, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
test_writer.writerow(['network_code',
'ID',
'earthquake_distance_km',
'snr_db',
'trace_name',
'trace_category',
'trace_start_time',
'source_magnitude',
'p_arrival_sample',
'p_status',
'p_weight',
's_arrival_sample',
's_status',
's_weight',
'receiver_type',
'number_of_detections',
'detection_probability',
'detection_uncertainty',
'P_pick',
'P_probability',
'P_uncertainty',
'P_error',
'S_pick',
'S_probability',
'S_uncertainty',
'S_error'
])
csvTst.flush()
plt_n = 0
print(test.shape)
data_generator = generate_arrays_from_file(test, batch_size)
data_generator_meta = generate_arrays_from_file(test_meta, args['batch_size'])
pbar_test = tqdm(total= int(np.ceil(len(test)/batch_size)))
for _ in range(int(np.ceil(len(test) / batch_size))):
pbar_test.update()
new_data_meta = next(data_generator_meta)
new_data = next(data_generator)
pred_DD_mean = np.zeros((0,6000,1))
pred_PP_mean = np.zeros((0,6000,1))
pred_SS_mean = np.zeros((0,6000,1))
for counter in range(int(batch_size)):
interpreter = tf.lite.Interpreter(model_path='keras_lstm/model_int8.tflite')
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
test_sample = np.expand_dims(new_data[counter,:,:], axis=0).astype(input_details[0]["dtype"])
interpreter.set_tensor(input_details[0]['index'], test_sample)
interpreter.invoke()
pred_PP = interpreter.get_tensor(output_details[0]['index'])
pred_DD = interpreter.get_tensor(output_details[1]['index'])
pred_SS = interpreter.get_tensor(output_details[2]['index'])
pred_DD_mean=np.concatenate((pred_DD_mean, pred_DD), axis=0)
pred_PP_mean=np.concatenate((pred_PP_mean, pred_PP), axis=0)
pred_SS_mean=np.concatenate((pred_SS_mean, pred_SS), axis=0)
pred_DD_mean = pred_DD_mean.reshape(pred_DD_mean.shape[0], pred_DD_mean.shape[1])
pred_PP_mean = pred_PP_mean.reshape(pred_PP_mean.shape[0], pred_PP_mean.shape[1])
pred_SS_mean = pred_SS_mean.reshape(pred_SS_mean.shape[0], pred_SS_mean.shape[1])
pred_DD_std = np.zeros((pred_DD_mean.shape))
pred_PP_std = np.zeros((pred_PP_mean.shape))
pred_SS_std = np.zeros((pred_SS_mean.shape))
test_set={}
fl = h5py.File(input_hdf5, 'r')
for ID in new_data_meta:
if ID.split('_')[-1] == 'EV':
dataset = fl.get('data/'+str(ID))
elif ID.split('_')[-1] == 'NO':
dataset = fl.get('data/'+str(ID))
test_set.update( {str(ID) : dataset})
for ts in range(pred_DD_mean.shape[0]):
evi = new_data_meta[ts]
dataset = test_set[evi]
try:
spt = int(dataset.attrs['p_arrival_sample']);
except Exception:
spt = None
try:
sst = int(dataset.attrs['s_arrival_sample']);
except Exception:
sst = None
matches, pick_errors, yh3=picker(args, pred_DD_mean[ts], pred_PP_mean[ts], pred_SS_mean[ts],
pred_DD_std[ts], pred_PP_std[ts], pred_SS_std[ts], spt, sst)
_output_writter_test(args,dataset, evi, test_writer, csvTst, matches, pick_errors)
if plt_n < args['number_of_plots']:
_plotter(dataset,
evi,
args,
save_figs,
pred_DD_mean[ts],
pred_PP_mean[ts],
pred_SS_mean[ts],
pred_DD_std[ts],
pred_PP_std[ts],
pred_SS_std[ts],
matches)
plt_n += 1
end_training = time.time()