-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrajectory.cpp
254 lines (216 loc) · 8.07 KB
/
trajectory.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// Copyright 2015 Google, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <random>
#include <chrono>
#include <cl/cl.h>
#include "debug.h"
#include "trajectory.h"
using namespace std;
static cl::group optimization_group("Optimization parameters");
static cl::arg<int> max_iterations(
32,
cl::name("max-iterations"),
cl::desc("Maximum number of iterations allowed when solving optimization problems."),
optimization_group);
static cl::arg<float> epsilon(
1e-3f,
cl::name("epsilon"),
cl::desc("Number to consider to be zero when solving optimization problems."),
optimization_group);
static cl::arg<float> lambda_init(
1.0f,
cl::name("lambda-init"),
cl::desc("Initial value of Levenberg-Marquardt damping parameter."),
optimization_group);
static cl::arg<float> lambda_decay(
0.1f,
cl::name("lambda-decay"),
cl::desc("Decay ratio of the Levenberg-Marquardt damping parameter on a successful iteration."),
optimization_group);
// A few helper print functions for debug output from this file.
std::ostream &operator <<(std::ostream &os, const observation &obs) {
return os << obs.t << " (" << obs.f << ")";
}
// Defines the objective function for a trajectory/ellipse intersection.
template <typename T>
T trajectory_sphere(float half_g, const trajectoryf &tj, const vector3f &s, float sqr_r, const T &t) {
vector3<T> x = tj.position_half_g<T>(half_g, t);
return sqr_abs(x - s) - sqr_r;
}
// Use Newton's method to find an intersection of a trajectory and an ellipse, using t_0 as the initial guess.
float intersect_trajectory_sphere(float half_g, const trajectoryf &tj, const vector3f &s, float sqr_r, float t) {
typedef diff<float, 1> d;
d ft;
for (int i = 0; i < max_iterations; i++) {
ft = trajectory_sphere<d>(half_g, tj, s, sqr_r, d(t, 0));
t -= ft.u/D(ft);
if (abs(ft.u) < epsilon)
return t;
}
throw runtime_error("no trajectory-ellipse intersection found");
}
// This function finds the first intersection after t of a trajectory and a ellipse.
float intersect_trajectory_sphere(float g, const trajectoryf &tj, const vector3f &s, float r, float t_min, float t_max) {
float sqr_r = sqr(r);
float dt = (t_max - t_min)/20.0f;
for (float t0 = t_min; t0 < t_max; t0 += dt) {
float t = intersect_trajectory_sphere(g/2.0f, tj, s, sqr_r, t0);
if (t_min < t && t < t_max)
return t;
}
throw runtime_error("no trajectory-ellipse intersection found");
}
// Find the intersection of a trajectory with the z plane. This function computes the
// later (larger t) of the two intersections.
float intersect_trajectory_zplane(float g, const trajectoryf &tj, float z) {
float a = g/2.0f;
float b = tj.v.z;
float c = tj.x.z - z;
float D = sqr(b) - 4.0f*a*c;
if (D < 0)
throw runtime_error("trajectory has no intercept with z plane");
return (-b - sqrt(D))/(2.0f*a);
}
typedef circular_array<observation, 128> observation_buffer;
// Evaluates the cost function to be optimized.
template <typename T>
vector2<T> reprojection_error(
float half_g,
const cameraf &cam,
const observation &ob,
const T* dt,
const trajectory<T> &tj) {
// Compute the error in screen space for the observation.
vector3<T> x;
if (dt) {
x = tj.position_half_g(half_g, *dt + ob.t);
} else {
x = tj.position_half_g(half_g, T(ob.t));
}
vector2<T> r = cam.project_to_focal_plane(x) - ob.f;
return -r;
}
// Estimates a trajectory t given a set of observations from two cameras. The input
// value of tj is used as an initial guess for optimization.
float estimate_trajectory(
float gravity,
const cameraf &cam0, const cameraf &cam1,
observation_buffer &obs0, observation_buffer &obs1,
float &dtf,
trajectoryf &tjf,
float time_limit) {
const float epsilon_sq = epsilon*epsilon;
const float half_g = gravity/2;
typedef chrono::high_resolution_clock clock;
auto t_begin = clock::now();
enum variable {
t = 0,
x_x, x_y, x_z,
v_x, v_y, v_z,
// The number of variables.
N,
};
typedef diff<float, N> d;
size_t M0 = static_cast<int>(obs0.size());
size_t M1 = static_cast<int>(obs1.size());
size_t M = M0 + M1;
dbg(1) << "estimate_trajectory, M=" << M << " (" << M0 << " + " << M1
<< "), time_limit=" << static_cast<int>(1000.0f*time_limit) << " ms ..." << endl;
if (M < N)
throw runtime_error("not enough observations");
d dt = d(dtf, t);
trajectory<d> tj;
tj.x = vector3<d>(d(tjf.x.x, x_x), d(tjf.x.y, x_y), d(tjf.x.z, x_z));
tj.v = vector3<d>(d(tjf.v.x, v_x), d(tjf.v.y, v_y), d(tjf.v.z, v_z));
// Levenberg-Marquardt state.
trajectory<d> prev_tj = tj;
float prev_error = std::numeric_limits<float>::infinity();
float lambda = lambda_init;
int it;
for (it = 1; it <= max_iterations; it++) {
// Compute J^T*J and b.
matrix<float, N, N> JTJ;
matrix<float, N, 1> JTy;
float error = 0.0f;
for (size_t i = 0; i < M; i++) {
const observation &o_i = i < M0 ? obs0[obs0.begin() + i] : obs1[obs1.begin() + i - M0];
vector2<d> r = reprojection_error(
half_g,
i < M0 ? cam0 : cam1,
o_i,
i < M0 ? nullptr : &dt, tj);
error += sqr(r.x.u) + sqr(r.y.u);
for (int i = 0; i < N; i++) {
float Dr_x_i = D(r.x, i);
float Dr_y_i = D(r.y, i);
// Add this residual to J^T*y.
JTy(i) -= Dr_x_i*r.x.u + Dr_y_i*r.y.u;
// Add this residual to J^T*J
for (int j = 0; j < N; j++)
JTJ(i, j) += Dr_x_i*D(r.x, j) + Dr_y_i*D(r.y, j);
}
}
// If error increased, throw away the previous iteration and
// reset the Levenberg-Marquardt damping parameter.
if (error > prev_error) {
dbg(2) << " it=" << it << ", ||dB||=<bad iteration>, error="
<< error << ", lambda=" << lambda << endl;
lambda_init /= lambda_decay;
lambda = lambda_init*randf(1.0f, 1.0f/lambda_decay);
prev_error = error;
tj = prev_tj;
continue;
} else {
lambda_init = lambda_decay;
}
// J^T*J <- J^T*J + lambda*diag(J^T*J)
for (int i = 0; i < N; i++)
JTJ(i, i) *= 1.0f + lambda;
// Solve J^T*J*dB = J^T*y.
matrix_ref<float, N, 1> dB = solve(JTJ, JTy);
if (!isfinite(dB))
throw runtime_error("estimate_trajectory optimization diverged");
// If the debug level is high, dump out info about the last few iterations.
if (dbg_level() >= 4 && it + dbg_level() >= max_iterations) {
dbg(4) << " it=" << it << ", ||dB||=" << sqrt(dot(dB, dB))
<< ", error=" << error << ", lambda=" << lambda << endl;
}
// Update Levenberg-Marquardt damping parameter.
lambda *= lambda_decay;
prev_error = error;
prev_tj = tj;
tj.x += vector3f(dB(x_x), dB(x_y), dB(x_z));
tj.v += vector3f(dB(v_x), dB(v_y), dB(v_z));
dt += dB(t);
if (dot(dB, dB) < epsilon_sq) {
if (dbg_level() >= 3) {
dbg(3) << " converged on it=" << it << ", ||dB||=" << sqrt(dot(dB, dB)) << endl;
}
break;
}
// Get the total time spent on trajetory estimation.
float time = chrono::duration_cast<chrono::duration<float>>(clock::now() - t_begin).count();
// Estimate the time after the next iteration, bail if it will exceed the time limit.
if (time*(1.0f + 1.0f/it) > time_limit) {
dbg(1) << " time limit exceeded on it=" << it << endl;
break;
}
}
tjf.x = vector_cast<float>(tj.x);
tjf.v = vector_cast<float>(tj.v);
dtf = scalar_cast<float>(dt);
auto time = clock::now() - t_begin;
dbg(2) << "estimate_trajectory finished, it=" << it << ", time=" << chrono::duration_cast<chrono::milliseconds>(time).count() << " ms " << endl;
return 0.0f;
}