You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I assume that the correlation value (rho) of "Sepal.Length" | Sepal.Width" is adjusted for the linear effect of "Petal.Length".
2.a) How does it works when I have 4 or a greater number of variables?
2.b) Would it be possible to determine which variable (either "Petal.Length" or "Petal.Width") controls the correlation between "Sepal.Length" | Sepal.Width"?
Parameter1 | Parameter2 | rho | 95% CI | pd | % in ROPE | Prior | BF
Sepal.Length | Sepal.Width | -0.11 | [-0.27, 0.04] | 91.62% | 44.38% | Beta (3 +- 3) | 0.509
Sepal.Length | Petal.Length | 0.86 | [ 0.82, 0.90] | 100%*** | 0% | Beta (3 +- 3) | 2.14e+43***
Sepal.Width | Petal.Length | -0.41 | [-0.54, -0.28] | 100%*** | 0% | Beta (3 +- 3) | 3.49e+05***
My aim is to compute bayesian partial correlations. I tried 2 different codes:
Which one yields the most reliable results?
Correlation Matrix (pearson-method)
Parameter1 | Parameter2 | rho | 95% CI | pd | % in ROPE | Prior | BF
Sepal.Length | Sepal.Width | -0.11 | [-0.25, 0.05] | 91.42% | 44.55% | Beta (3 +- 3) | 0.509
Sepal.Length | Petal.Length | 0.86 | [ 0.82, 0.90] | 100%*** | 0% | Beta (3 +- 3) | 2.14e+43***
Sepal.Width | Petal.Length | -0.41 | [-0.55, -0.28] | 100%*** | 0% | Beta (3 +- 3) | 3.49e+05***
Observations: 150
Correlation Matrix (pearson-method)
Parameter1 | Parameter2 | rho | 95% CI | pd | % in ROPE | Prior | BF
Sepal.Length | Sepal.Width | 0.57 | [ 0.45, 0.66] | 100%*** | 0% | Beta (3 +- 3) | 6.96e+11***
Sepal.Length | Petal.Length | 0.91 | [ 0.87, 0.93] | 100%*** | 0% | Beta (3 +- 3) | 2.81e+55***
Sepal.Width | Petal.Length | -0.65 | [-0.74, -0.56] | 100%*** | 0% | Beta (3 +- 3) | 4.73e+17***
Observations: 150
2.a) How does it works when I have 4 or a greater number of variables?
2.b) Would it be possible to determine which variable (either "Petal.Length" or "Petal.Width") controls the correlation between "Sepal.Length" | Sepal.Width"?
g<-correlation(iris, select=c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), bayesian = TRUE)
The text was updated successfully, but these errors were encountered: