-
-
Notifications
You must be signed in to change notification settings - Fork 19
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
estimate_contrasts() ignores transform = "" input #210
Comments
Thanks for reporting, let me give a look asap |
Possibly related to (fixed by?) #204 |
Possibly related to easystats/insight#584 |
The problem still persists (not fixed) |
We really should solve these issues by transitioning the function to use marginaleffects instead of emmeans |
One thing to keep in mind is that I'm more than happy to help out by answering questions, and by trying to replicate |
I feel ya. I also want to do this, but nothing short of burning my laptop seems to work. |
Not sure what the expected output would be, but I get different results, suggesting that it works now? library(easystats)
#> # Attaching packages: easystats 0.5.2.8
#> ✔ bayestestR 0.13.0 ✔ correlation 0.8.2.4
#> ✔ datawizard 0.6.0.1 ✔ effectsize 0.7.9.1
#> ✔ insight 0.18.4.3 ✔ modelbased 0.8.5
#> ✔ performance 0.9.2.4 ✔ parameters 0.18.2.9
#> ✔ report 0.5.5.1 ✔ see 0.7.3.1
model <- lm(log(Sepal.Width) ~ Species, data = iris)
estimate_contrasts(model, transform = "none")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Difference | 95% CI | SE | t(147) | p
#> ------------------------------------------------------------------------------
#> setosa | versicolor | 0.21 | [ 0.16, 0.27] | 0.02 | 9.47 | < .001
#> setosa | virginica | 0.14 | [ 0.09, 0.20] | 0.02 | 6.28 | < .001
#> versicolor | virginica | -0.07 | [-0.13, -0.02] | 0.02 | -3.19 | 0.002
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979)
estimate_contrasts(model, transform = "response")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Ratio | 95% CI | SE | t(147) | p
#> -----------------------------------------------------------------------
#> setosa | versicolor | 1.24 | [1.17, 1.31] | 0.03 | 9.47 | < .001
#> setosa | virginica | 1.15 | [1.09, 1.22] | 0.03 | 6.28 | < .001
#> versicolor | virginica | 0.93 | [0.88, 0.98] | 0.02 | -3.19 | 0.002
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979) Created on 2022-09-22 with reprex v2.0.2 |
@strengejacke thank you very much for your comment. Your result is indeed the desired result, however, I am not able to reproduce it (see code below). I noticed, that some of your easystats package versions are different from mine. I updated with library(easystats)
#> # Attaching packages: easystats 0.5.2.8
#> ✔ bayestestR 0.13.0 ✔ correlation 0.8.2
#> ✔ datawizard 0.6.0 ✔ effectsize 0.7.0.5
#> ✔ insight 0.18.4 ✔ modelbased 0.8.5
#> ✔ performance 0.9.2 ✔ parameters 0.18.2
#> ✔ report 0.5.5 ✔ see 0.7.3
model <- lm(log(Sepal.Width) ~ Species, data = iris)
estimate_contrasts(model, transform = "none")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Difference | 95% CI | SE | t(147) | p
#> ------------------------------------------------------------------------------
#> setosa | versicolor | 0.21 | [ 0.16, 0.27] | 0.02 | 9.47 | < .001
#> setosa | virginica | 0.14 | [ 0.09, 0.20] | 0.02 | 6.28 | < .001
#> versicolor | virginica | -0.07 | [-0.13, -0.02] | 0.02 | -3.19 | 0.005
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979)
estimate_contrasts(model, transform = "response")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Difference | 95% CI | SE | t(147) | p
#> ------------------------------------------------------------------------------
#> setosa | versicolor | 0.21 | [ 0.16, 0.27] | 0.02 | 9.47 | < .001
#> setosa | virginica | 0.14 | [ 0.09, 0.20] | 0.02 | 6.28 | < .001
#> versicolor | virginica | -0.07 | [-0.13, -0.02] | 0.02 | -3.19 | 0.005
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979)
Created on 2022-09-22 with reprex v2.0.2.9000 |
Run |
@IndrajeetPatil thank you very much for your comment. With the suggested code I was able to update my easystats packages. I suggest to add this code to the easystats homepage in the Installation section. Unfortunately, also with the updated packages I am unable to reproduce the desired result: library(easystats)
#> # Attaching packages: easystats 0.5.2.8
#> ✔ bayestestR 0.13.0 ✔ correlation 0.8.2.4
#> ✔ datawizard 0.6.0.1 ✔ effectsize 0.7.9.1
#> ✔ insight 0.18.4.3 ✔ modelbased 0.8.5
#> ✔ performance 0.9.2.4 ✔ parameters 0.18.2.9
#> ✔ report 0.5.5.1 ✔ see 0.7.3.1
model <- lm(log(Sepal.Width) ~ Species, data = iris)
estimate_contrasts(model, transform = "none")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Difference | 95% CI | SE | t(147) | p
#> ------------------------------------------------------------------------------
#> setosa | versicolor | 0.21 | [ 0.16, 0.27] | 0.02 | 9.47 | < .001
#> setosa | virginica | 0.14 | [ 0.09, 0.20] | 0.02 | 6.28 | < .001
#> versicolor | virginica | -0.07 | [-0.13, -0.02] | 0.02 | -3.19 | 0.005
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979)
estimate_contrasts(model, transform = "response")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Difference | 95% CI | SE | t(147) | p
#> ------------------------------------------------------------------------------
#> setosa | versicolor | 0.21 | [ 0.16, 0.27] | 0.02 | 9.47 | < .001
#> setosa | virginica | 0.14 | [ 0.09, 0.20] | 0.02 | 6.28 | < .001
#> versicolor | virginica | -0.07 | [-0.13, -0.02] | 0.02 | -3.19 | 0.005
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979)
Created on 2022-09-22 with reprex v2.0.2.9000 |
I'm going to try now to add marginaleffects as a backend for estimate_contrasts / estimate_means 🤞 |
Hello everyone, thank you very much so far for your comments and help. I did a complet re-installation of R, RTools and RStudio following this guideline: I also installed every package again, including easystats (including the I did NOT get the result of @strengejacke . I seriously do not understand. @strengejacke are you using Linux or Mac, because I am using Windows 10? Are you using a strange "for developers only" version of easystats or any other package, which I am not able to get? I am really desperate at this point ... How about the others in this issue? Do you also get @strengejacke 's result? Am I the only one who does not get the desired result? |
This is what I get: (you can see my versions of packages installed) - what version of emmeans are you using (mine is emmeans_1.7.4-1)? library(easystats)
#> # Attaching packages: easystats 0.4.3 (red = needs update)
#> ✖ insight 0.18.3.2 ✖ datawizard 0.6.0.1
#> ✔ bayestestR 0.13.0 ✔ performance 0.9.2.4
#> ✔ parameters 0.18.2.7 ✔ effectsize 0.7.9.1
#> ✔ modelbased 0.8.5 ✔ correlation 0.8.2.4
#> ✔ see 0.7.3 ✔ report 0.5.5.1
#>
#> Restart the R-Session and update packages in red with 'easystats::easystats_update()'.
model <- lm(log(Sepal.Width) ~ Species, data = iris)
estimate_contrasts(model, transform = "none")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Difference | 95% CI | SE | t(147) | p
#> ------------------------------------------------------------------------------
#> setosa | versicolor | 0.21 | [ 0.16, 0.27] | 0.02 | 9.47 | < .001
#> setosa | virginica | 0.14 | [ 0.09, 0.20] | 0.02 | 6.28 | < .001
#> versicolor | virginica | -0.07 | [-0.13, -0.02] | 0.02 | -3.19 | 0.002
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979)
estimate_contrasts(model, transform = "response")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Ratio | 95% CI | SE | t(147) | p
#> -----------------------------------------------------------------------
#> setosa | versicolor | 1.24 | [1.17, 1.31] | 0.03 | 9.47 | < .001
#> setosa | virginica | 1.15 | [1.09, 1.22] | 0.03 | 6.28 | < .001
#> versicolor | virginica | 0.93 | [0.88, 0.98] | 0.02 | -3.19 | 0.002
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979) Created on 2022-09-28 by the reprex package (v2.0.1) |
The result (see below) looks exactly like in my previous comments. The result indicates, that estimate_contrasts() still ignores the transform input. I am using a fresh install of everything (as mentioned before) with the following versions:
What is going wrong, I seriously do not get it????? library(easystats)
#> # Attaching packages: easystats 0.5.2.8
#> ✔ bayestestR 0.13.0 ✔ correlation 0.8.2.4
#> ✔ datawizard 0.6.1.1 ✔ effectsize 0.7.9.1999
#> ✔ insight 0.18.4.5 ✔ modelbased 0.8.5
#> ✔ performance 0.9.2.4 ✔ parameters 0.18.2.9
#> ✔ report 0.5.5.1 ✔ see 0.7.3.1
model <- lm(log(Sepal.Width) ~ Species, data = iris)
estimate_contrasts(model, transform = "none")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Difference | 95% CI | SE | t(147) | p
#> ------------------------------------------------------------------------------
#> setosa | versicolor | 0.21 | [ 0.16, 0.27] | 0.02 | 9.47 | < .001
#> setosa | virginica | 0.14 | [ 0.09, 0.20] | 0.02 | 6.28 | < .001
#> versicolor | virginica | -0.07 | [-0.13, -0.02] | 0.02 | -3.19 | 0.005
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979)
estimate_contrasts(model, transform = "response")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Difference | 95% CI | SE | t(147) | p
#> ------------------------------------------------------------------------------
#> setosa | versicolor | 0.21 | [ 0.16, 0.27] | 0.02 | 9.47 | < .001
#> setosa | virginica | 0.14 | [ 0.09, 0.20] | 0.02 | 6.28 | < .001
#> versicolor | virginica | -0.07 | [-0.13, -0.02] | 0.02 | -3.19 | 0.005
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979)
Created on 2022-09-28 with reprex v2.0.2 |
This now includes my session info: library(easystats)
#> # Attaching packages: easystats 0.5.2.2
#> ✔ insight 0.18.4.5 ✔ datawizard 0.6.1.1
#> ✔ bayestestR 0.13.0 ✔ performance 0.9.2.4
#> ✔ parameters 0.18.2.9 ✔ effectsize 0.7.9.1999
#> ✔ modelbased 0.8.5 ✔ correlation 0.8.2.4
#> ✔ see 0.7.3.1 ✔ report 0.5.5.1
model <- lm(log(Sepal.Width) ~ Species, data = iris)
estimate_contrasts(model, transform = "none")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Difference | 95% CI | SE | t(147) | p
#> ------------------------------------------------------------------------------
#> setosa | versicolor | 0.21 | [ 0.16, 0.27] | 0.02 | 9.47 | < .001
#> setosa | virginica | 0.14 | [ 0.09, 0.20] | 0.02 | 6.28 | < .001
#> versicolor | virginica | -0.07 | [-0.13, -0.02] | 0.02 | -3.19 | 0.002
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979)
estimate_contrasts(model, transform = "response")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Ratio | 95% CI | SE | t(147) | p
#> -----------------------------------------------------------------------
#> setosa | versicolor | 1.24 | [1.17, 1.31] | 0.03 | 9.47 | < .001
#> setosa | virginica | 1.15 | [1.09, 1.22] | 0.03 | 6.28 | < .001
#> versicolor | virginica | 0.93 | [0.88, 0.98] | 0.02 | -3.19 | 0.002
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979) Session Infosessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.2.1 (2022-06-23 ucrt)
#> os Windows 10 x64 (build 22000)
#> system x86_64, mingw32
#> ui RTerm
#> language (EN)
#> collate German_Germany.utf8
#> ctype German_Germany.utf8
#> tz Europe/Berlin
#> date 2022-09-28
#> pandoc 2.18 @ C:/Users/mail/AppData/Local/Pandoc/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.2.0)
#> bayestestR * 0.13.0 2022-09-18 [1] https://easystats.r-universe.dev (R 4.2.1)
#> cli 3.4.1 2022-09-23 [1] CRAN (R 4.2.1)
#> coda 0.19-4 2020-09-30 [1] CRAN (R 4.2.0)
#> codetools 0.2-18 2020-11-04 [2] CRAN (R 4.2.1)
#> colorspace 2.0-3 2022-02-21 [1] CRAN (R 4.2.0)
#> correlation * 0.8.2.4 2022-09-13 [1] https://easystats.r-universe.dev (R 4.2.1)
#> datawizard * 0.6.1.1 2022-09-25 [1] https://easystats.r-universe.dev (R 4.2.1)
#> DBI 1.1.3 2022-06-18 [1] CRAN (R 4.2.0)
#> digest 0.6.29 2021-12-01 [1] CRAN (R 4.2.0)
#> dplyr 1.0.10 2022-09-01 [1] CRAN (R 4.2.1)
#> easystats * 0.5.2.2 2022-08-31 [1] local
#> effectsize * 0.7.9.1999 2022-09-28 [1] https://easystats.r-universe.dev (R 4.2.1)
#> emmeans 1.8.1-1 2022-09-08 [1] CRAN (R 4.2.1)
#> estimability 1.4.1 2022-08-05 [1] CRAN (R 4.2.1)
#> evaluate 0.16 2022-08-09 [1] CRAN (R 4.2.1)
#> fansi 1.0.3 2022-03-24 [1] CRAN (R 4.2.0)
#> fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.2.0)
#> fs 1.5.2 2021-12-08 [1] CRAN (R 4.2.0)
#> generics 0.1.3 2022-07-05 [1] CRAN (R 4.2.1)
#> ggplot2 3.3.6 2022-05-03 [1] CRAN (R 4.2.0)
#> glue 1.6.2 2022-02-24 [1] CRAN (R 4.2.0)
#> gtable 0.3.1 2022-09-01 [1] CRAN (R 4.2.1)
#> highr 0.9 2021-04-16 [1] CRAN (R 4.2.0)
#> htmltools 0.5.3 2022-07-18 [1] CRAN (R 4.2.1)
#> insight * 0.18.4.5 2022-09-27 [1] https://easystats.r-universe.dev (R 4.2.1)
#> knitr 1.40 2022-08-24 [1] CRAN (R 4.2.1)
#> lattice 0.20-45 2021-09-22 [1] CRAN (R 4.2.0)
#> lifecycle 1.0.2 2022-09-09 [1] CRAN (R 4.2.1)
#> magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.2.0)
#> MASS 7.3-58.1 2022-08-03 [1] CRAN (R 4.2.1)
#> Matrix 1.5-1 2022-09-13 [1] CRAN (R 4.2.1)
#> modelbased * 0.8.5 2022-09-26 [1] https://easystats.r-universe.dev (R 4.2.1)
#> multcomp 1.4-20 2022-08-07 [1] CRAN (R 4.2.1)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.2.0)
#> mvtnorm 1.1-3 2021-10-08 [1] CRAN (R 4.2.0)
#> parameters * 0.18.2.9 2022-09-27 [1] https://easystats.r-universe.dev (R 4.2.1)
#> performance * 0.9.2.4 2022-09-28 [1] https://easystats.r-universe.dev (R 4.2.1)
#> pillar 1.8.1 2022-08-19 [1] CRAN (R 4.2.1)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.0)
#> purrr 0.3.4 2020-04-17 [1] CRAN (R 4.2.0)
#> R.cache 0.16.0 2022-07-21 [1] CRAN (R 4.2.1)
#> R.methodsS3 1.8.2 2022-06-13 [1] CRAN (R 4.2.0)
#> R.oo 1.25.0 2022-06-12 [1] CRAN (R 4.2.0)
#> R.utils 2.12.0 2022-06-28 [1] CRAN (R 4.2.0)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.1)
#> report * 0.5.5.1 2022-09-12 [1] https://easystats.r-universe.dev (R 4.2.1)
#> reprex 2.0.2 2022-08-17 [1] CRAN (R 4.2.1)
#> rlang 1.0.6 2022-09-24 [1] CRAN (R 4.2.1)
#> rmarkdown 2.16 2022-08-24 [1] CRAN (R 4.2.1)
#> rstudioapi 0.14 2022-08-22 [1] CRAN (R 4.2.1)
#> sandwich 3.0-2 2022-06-15 [1] CRAN (R 4.2.0)
#> scales 1.2.1 2022-08-20 [1] CRAN (R 4.2.1)
#> see * 0.7.3.1 2022-09-27 [1] https://easystats.r-universe.dev (R 4.2.1)
#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.2.0)
#> stringi 1.7.8 2022-07-11 [1] CRAN (R 4.2.1)
#> stringr 1.4.1 2022-08-20 [1] CRAN (R 4.2.1)
#> styler 1.7.0 2022-03-13 [1] CRAN (R 4.2.0)
#> survival 3.4-0 2022-08-09 [1] CRAN (R 4.2.1)
#> TH.data 1.1-1 2022-04-26 [1] CRAN (R 4.2.0)
#> tibble 3.1.8 2022-07-22 [1] CRAN (R 4.2.1)
#> tidyselect 1.1.2 2022-02-21 [1] CRAN (R 4.2.0)
#> utf8 1.2.2 2021-07-24 [1] CRAN (R 4.2.0)
#> vctrs 0.4.1 2022-04-13 [1] CRAN (R 4.2.0)
#> withr 2.5.0 2022-03-03 [1] CRAN (R 4.2.0)
#> xfun 0.33 2022-09-12 [1] CRAN (R 4.2.1)
#> xtable 1.8-4 2019-04-21 [1] CRAN (R 4.2.0)
#> yaml 2.3.5 2022-02-21 [1] CRAN (R 4.2.0)
#> zoo 1.8-11 2022-09-17 [1] CRAN (R 4.2.1)
#>
#> [1] C:/Users/mail/AppData/Local/R/win-library/4.2
#> [2] C:/Program Files/R/R-4.2.1/library
#>
#> ────────────────────────────────────────────────────────────────────────────── |
@strengejacke thank you very much for your comment. I did the same with my system, see result below. What surprises me is your easystats package version 0.5.2.2. I was unable to get this exact version, the CRAN version is 0.5.2 (which is the one I tried out below) and the r-universe version is 0.5.2.8 which is the same as the GitHub version. In addition, in your session info it says "local" as source of the easystats package. Do you maybe have a modified version of easystats, which I am unable to access? Could you do me the favor and update your system with library(easystats)
#> # Attaching packages: easystats 0.5.2
#> ✔ insight 0.18.4.5 ✔ datawizard 0.6.1.1
#> ✔ bayestestR 0.13.0 ✔ performance 0.9.2.4
#> ✔ parameters 0.18.2.9 ✔ effectsize 0.7.9.1999
#> ✔ modelbased 0.8.5 ✔ correlation 0.8.2.4
#> ✔ see 0.7.3.1 ✔ report 0.5.5.1
model <- lm(log(Sepal.Width) ~ Species, data = iris)
estimate_contrasts(model, transform = "none")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Difference | 95% CI | SE | t(147) | p
#> ------------------------------------------------------------------------------
#> setosa | versicolor | 0.21 | [ 0.16, 0.27] | 0.02 | 9.47 | < .001
#> setosa | virginica | 0.14 | [ 0.09, 0.20] | 0.02 | 6.28 | < .001
#> versicolor | virginica | -0.07 | [-0.13, -0.02] | 0.02 | -3.19 | 0.005
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979)
estimate_contrasts(model, transform = "response")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Difference | 95% CI | SE | t(147) | p
#> ------------------------------------------------------------------------------
#> setosa | versicolor | 0.21 | [ 0.16, 0.27] | 0.02 | 9.47 | < .001
#> setosa | virginica | 0.14 | [ 0.09, 0.20] | 0.02 | 6.28 | < .001
#> versicolor | virginica | -0.07 | [-0.13, -0.02] | 0.02 | -3.19 | 0.005
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979)
sessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.2.1 (2022-06-23 ucrt)
#> os Windows 10 x64 (build 19042)
#> system x86_64, mingw32
#> ui RTerm
#> language (EN)
#> collate German_Germany.utf8
#> ctype German_Germany.utf8
#> tz Europe/Berlin
#> date 2022-09-28
#> pandoc 2.19.2 @ C:/Program Files/RStudio/bin/quarto/bin/tools/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> bayestestR * 0.13.0 2022-09-18 [1] CRAN (R 4.2.1)
#> cli 3.4.1 2022-09-23 [1] CRAN (R 4.2.1)
#> coda 0.19-4 2020-09-30 [1] CRAN (R 4.2.1)
#> codetools 0.2-18 2020-11-04 [1] CRAN (R 4.2.0)
#> colorspace 2.0-3 2022-02-21 [1] CRAN (R 4.2.1)
#> correlation * 0.8.2.4 2022-09-13 [1] https://easystats.r-universe.dev (R 4.2.1)
#> datawizard * 0.6.1.1 2022-09-28 [1] https://easystats.r-universe.dev (R 4.2.1)
#> digest 0.6.29 2021-12-01 [1] CRAN (R 4.2.1)
#> dplyr 1.0.10 2022-09-01 [1] CRAN (R 4.2.1)
#> easystats * 0.5.2 2022-08-30 [1] CRAN (R 4.2.1)
#> effectsize * 0.7.9.1999 2022-09-28 [1] https://easystats.r-universe.dev (R 4.2.1)
#> emmeans 1.8.1-1 2022-09-08 [1] CRAN (R 4.2.1)
#> estimability 1.4.1 2022-08-05 [1] CRAN (R 4.2.1)
#> evaluate 0.16 2022-08-09 [1] CRAN (R 4.2.1)
#> fansi 1.0.3 2022-03-24 [1] CRAN (R 4.2.1)
#> fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.2.1)
#> fs 1.5.2 2021-12-08 [1] CRAN (R 4.2.1)
#> generics 0.1.3 2022-07-05 [1] CRAN (R 4.2.1)
#> ggplot2 3.3.6 2022-05-03 [1] CRAN (R 4.2.1)
#> glue 1.6.2 2022-02-24 [1] CRAN (R 4.2.1)
#> gtable 0.3.1 2022-09-01 [1] CRAN (R 4.2.1)
#> highr 0.9 2021-04-16 [1] CRAN (R 4.2.1)
#> htmltools 0.5.3 2022-07-18 [1] CRAN (R 4.2.1)
#> insight * 0.18.4.5 2022-09-27 [1] https://easystats.r-universe.dev (R 4.2.1)
#> knitr 1.40 2022-08-24 [1] CRAN (R 4.2.1)
#> lattice 0.20-45 2021-09-22 [2] CRAN (R 4.2.1)
#> lifecycle 1.0.2 2022-09-09 [1] CRAN (R 4.2.1)
#> magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.2.1)
#> MASS 7.3-58.1 2022-08-03 [1] CRAN (R 4.2.1)
#> Matrix 1.5-1 2022-09-13 [1] CRAN (R 4.2.1)
#> modelbased * 0.8.5 2022-08-18 [1] CRAN (R 4.2.1)
#> multcomp 1.4-20 2022-08-07 [1] CRAN (R 4.2.1)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.2.1)
#> mvtnorm 1.1-3 2021-10-08 [1] CRAN (R 4.2.0)
#> parameters * 0.18.2.9 2022-09-27 [1] https://easystats.r-universe.dev (R 4.2.1)
#> performance * 0.9.2.4 2022-09-27 [1] https://easystats.r-universe.dev (R 4.2.1)
#> pillar 1.8.1 2022-08-19 [1] CRAN (R 4.2.1)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.1)
#> purrr 0.3.4 2020-04-17 [1] CRAN (R 4.2.1)
#> R.cache 0.16.0 2022-07-21 [1] CRAN (R 4.2.1)
#> R.methodsS3 1.8.2 2022-06-13 [1] CRAN (R 4.2.0)
#> R.oo 1.25.0 2022-06-12 [1] CRAN (R 4.2.0)
#> R.utils 2.12.0 2022-06-28 [1] CRAN (R 4.2.1)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.1)
#> report * 0.5.5.1 2022-09-12 [1] https://easystats.r-universe.dev (R 4.2.1)
#> reprex 2.0.2 2022-08-17 [1] CRAN (R 4.2.1)
#> rlang 1.0.6 2022-09-24 [1] CRAN (R 4.2.1)
#> rmarkdown 2.16 2022-08-24 [1] CRAN (R 4.2.1)
#> rstudioapi 0.14 2022-08-22 [1] CRAN (R 4.2.1)
#> sandwich 3.0-2 2022-06-15 [1] CRAN (R 4.2.1)
#> scales 1.2.1 2022-08-20 [1] CRAN (R 4.2.1)
#> see * 0.7.3.1 2022-09-27 [1] https://easystats.r-universe.dev (R 4.2.1)
#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.2.1)
#> stringi 1.7.8 2022-07-11 [1] CRAN (R 4.2.1)
#> stringr 1.4.1 2022-08-20 [1] CRAN (R 4.2.1)
#> styler 1.7.0 2022-03-13 [1] CRAN (R 4.2.1)
#> survival 3.4-0 2022-08-09 [1] CRAN (R 4.2.1)
#> TH.data 1.1-1 2022-04-26 [1] CRAN (R 4.2.1)
#> tibble 3.1.8 2022-07-22 [1] CRAN (R 4.2.1)
#> tidyselect 1.1.2 2022-02-21 [1] CRAN (R 4.2.1)
#> utf8 1.2.2 2021-07-24 [1] CRAN (R 4.2.1)
#> vctrs 0.4.1 2022-04-13 [1] CRAN (R 4.2.1)
#> withr 2.5.0 2022-03-03 [1] CRAN (R 4.2.1)
#> xfun 0.33 2022-09-12 [1] CRAN (R 4.2.1)
#> xtable 1.8-4 2019-04-21 [1] CRAN (R 4.2.1)
#> yaml 2.3.5 2022-02-21 [1] CRAN (R 4.2.1)
#> zoo 1.8-11 2022-09-17 [1] CRAN (R 4.2.1)
#>
#> [1] C:/Users/*USERNAME*/AppData/Local/R/win-library/4.2
#> [2] C:/Program Files/R/R-4.2.1/library
#>
#> ────────────────────────────────────────────────────────────────────────────── Created on 2022-09-28 with reprex v2.0.2 |
I doubt it's due to easystats since this package is on a higher level. Can you try |
@strengejacke thank you very much, now it is working (see result below)!!! library(easystats)
#> # Attaching packages: easystats 0.5.2.8
#> ✔ bayestestR 0.13.0 ✔ correlation 0.8.2.4
#> ✔ datawizard 0.6.1.1 ✔ effectsize 0.7.9.1999
#> ✔ insight 0.18.4.5 ✔ modelbased 0.8.5
#> ✔ performance 0.9.2.4 ✔ parameters 0.18.2.9
#> ✔ report 0.5.5.1 ✔ see 0.7.3.1
model <- lm(log(Sepal.Width) ~ Species, data = iris)
estimate_contrasts(model, transform = "none")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Difference | 95% CI | SE | t(147) | p
#> ------------------------------------------------------------------------------
#> setosa | versicolor | 0.21 | [ 0.16, 0.27] | 0.02 | 9.47 | < .001
#> setosa | virginica | 0.14 | [ 0.09, 0.20] | 0.02 | 6.28 | < .001
#> versicolor | virginica | -0.07 | [-0.13, -0.02] | 0.02 | -3.19 | 0.002
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979)
estimate_contrasts(model, transform = "response")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Ratio | 95% CI | SE | t(147) | p
#> -----------------------------------------------------------------------
#> setosa | versicolor | 1.24 | [1.17, 1.31] | 0.03 | 9.47 | < .001
#> setosa | virginica | 1.15 | [1.09, 1.22] | 0.03 | 6.28 | < .001
#> versicolor | virginica | 0.93 | [0.88, 0.98] | 0.02 | -3.19 | 0.002
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979)
sessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.2.1 (2022-06-23 ucrt)
#> os Windows 10 x64 (build 19042)
#> system x86_64, mingw32
#> ui RTerm
#> language (EN)
#> collate German_Germany.utf8
#> ctype German_Germany.utf8
#> tz Europe/Berlin
#> date 2022-09-28
#> pandoc 2.19.2 @ C:/Program Files/RStudio/bin/quarto/bin/tools/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> bayestestR * 0.13.0 2022-09-18 [1] https://easystats.r-universe.dev (R 4.2.1)
#> cli 3.4.1 2022-09-23 [1] CRAN (R 4.2.1)
#> coda 0.19-4 2020-09-30 [1] CRAN (R 4.2.1)
#> codetools 0.2-18 2020-11-04 [1] CRAN (R 4.2.0)
#> colorspace 2.0-3 2022-02-21 [1] CRAN (R 4.2.1)
#> correlation * 0.8.2.4 2022-09-13 [1] https://easystats.r-universe.dev (R 4.2.1)
#> datawizard * 0.6.1.1 2022-09-28 [1] https://easystats.r-universe.dev (R 4.2.1)
#> digest 0.6.29 2021-12-01 [1] CRAN (R 4.2.1)
#> dplyr 1.0.10 2022-09-01 [1] CRAN (R 4.2.1)
#> easystats * 0.5.2.8 2022-09-23 [1] https://easystats.r-universe.dev (R 4.2.1)
#> effectsize * 0.7.9.1999 2022-09-28 [1] https://easystats.r-universe.dev (R 4.2.1)
#> emmeans 1.8.1-1 2022-09-08 [1] CRAN (R 4.2.1)
#> estimability 1.4.1 2022-08-05 [1] CRAN (R 4.2.1)
#> evaluate 0.16 2022-08-09 [1] CRAN (R 4.2.1)
#> fansi 1.0.3 2022-03-24 [1] CRAN (R 4.2.1)
#> fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.2.1)
#> fs 1.5.2 2021-12-08 [1] CRAN (R 4.2.1)
#> generics 0.1.3 2022-07-05 [1] CRAN (R 4.2.1)
#> ggplot2 3.3.6 2022-05-03 [1] CRAN (R 4.2.1)
#> glue 1.6.2 2022-02-24 [1] CRAN (R 4.2.1)
#> gtable 0.3.1 2022-09-01 [1] CRAN (R 4.2.1)
#> highr 0.9 2021-04-16 [1] CRAN (R 4.2.1)
#> htmltools 0.5.3 2022-07-18 [1] CRAN (R 4.2.1)
#> insight * 0.18.4.5 2022-09-27 [1] https://easystats.r-universe.dev (R 4.2.1)
#> knitr 1.40 2022-08-24 [1] CRAN (R 4.2.1)
#> lattice 0.20-45 2021-09-22 [2] CRAN (R 4.2.1)
#> lifecycle 1.0.2 2022-09-09 [1] CRAN (R 4.2.1)
#> magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.2.1)
#> MASS 7.3-58.1 2022-08-03 [1] CRAN (R 4.2.1)
#> Matrix 1.5-1 2022-09-13 [1] CRAN (R 4.2.1)
#> modelbased * 0.8.5 2022-09-26 [1] https://easystats.r-universe.dev (R 4.2.1)
#> multcomp 1.4-20 2022-08-07 [1] CRAN (R 4.2.1)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.2.1)
#> mvtnorm 1.1-3 2021-10-08 [1] CRAN (R 4.2.0)
#> parameters * 0.18.2.9 2022-09-27 [1] https://easystats.r-universe.dev (R 4.2.1)
#> performance * 0.9.2.4 2022-09-28 [1] https://easystats.r-universe.dev (R 4.2.1)
#> pillar 1.8.1 2022-08-19 [1] CRAN (R 4.2.1)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.1)
#> purrr 0.3.4 2020-04-17 [1] CRAN (R 4.2.1)
#> R.cache 0.16.0 2022-07-21 [1] CRAN (R 4.2.1)
#> R.methodsS3 1.8.2 2022-06-13 [1] CRAN (R 4.2.0)
#> R.oo 1.25.0 2022-06-12 [1] CRAN (R 4.2.0)
#> R.utils 2.12.0 2022-06-28 [1] CRAN (R 4.2.1)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.1)
#> report * 0.5.5.1 2022-09-12 [1] https://easystats.r-universe.dev (R 4.2.1)
#> reprex 2.0.2 2022-08-17 [1] CRAN (R 4.2.1)
#> rlang 1.0.6 2022-09-24 [1] CRAN (R 4.2.1)
#> rmarkdown 2.16 2022-08-24 [1] CRAN (R 4.2.1)
#> rstudioapi 0.14 2022-08-22 [1] CRAN (R 4.2.1)
#> sandwich 3.0-2 2022-06-15 [1] CRAN (R 4.2.1)
#> scales 1.2.1 2022-08-20 [1] CRAN (R 4.2.1)
#> see * 0.7.3.1 2022-09-27 [1] https://easystats.r-universe.dev (R 4.2.1)
#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.2.1)
#> stringi 1.7.8 2022-07-11 [1] CRAN (R 4.2.1)
#> stringr 1.4.1 2022-08-20 [1] CRAN (R 4.2.1)
#> styler 1.7.0 2022-03-13 [1] CRAN (R 4.2.1)
#> survival 3.4-0 2022-08-09 [1] CRAN (R 4.2.1)
#> TH.data 1.1-1 2022-04-26 [1] CRAN (R 4.2.1)
#> tibble 3.1.8 2022-07-22 [1] CRAN (R 4.2.1)
#> tidyselect 1.1.2 2022-02-21 [1] CRAN (R 4.2.1)
#> utf8 1.2.2 2021-07-24 [1] CRAN (R 4.2.1)
#> vctrs 0.4.1 2022-04-13 [1] CRAN (R 4.2.1)
#> withr 2.5.0 2022-03-03 [1] CRAN (R 4.2.1)
#> xfun 0.33 2022-09-12 [1] CRAN (R 4.2.1)
#> xtable 1.8-4 2019-04-21 [1] CRAN (R 4.2.1)
#> yaml 2.3.5 2022-02-21 [1] CRAN (R 4.2.1)
#> zoo 1.8-11 2022-09-17 [1] CRAN (R 4.2.1)
#>
#> [1] C:/Users/gwn/AppData/Local/R/win-library/4.2
#> [2] C:/Program Files/R/R-4.2.1/library
#>
#> ────────────────────────────────────────────────────────────────────────────── Created on 2022-09-28 with reprex v2.0.2 |
Hallo everybody, thank you very much for your help so far! I just realized that In the example above we have: library(easystats)
#> # Attaching packages: easystats 0.5.2.8
#> ✔ bayestestR 0.13.0 ✔ correlation 0.8.2.4
#> ✔ datawizard 0.6.1.1 ✔ effectsize 0.7.9.1999
#> ✔ insight 0.18.4.5 ✔ modelbased 0.8.5
#> ✔ performance 0.9.2.4 ✔ parameters 0.18.2.9
#> ✔ report 0.5.5.1 ✔ see 0.7.3.1
model <- lm(log(Sepal.Width) ~ Species, data = iris)
estimate_means(model, transform = "response")
#> We selected `at = c("Species")`.
#> Estimated Marginal Means
#>
#> Species | Mean | SE | 95% CI
#> ---------------------------------------
#> setosa | 3.41 | 0.05 | [3.30, 3.52]
#> versicolor | 2.75 | 0.04 | [2.67, 2.84]
#> virginica | 2.96 | 0.05 | [2.87, 3.05]
#>
#> Marginal means estimated at Species Created on 2022-09-29 with reprex v2.0.2 I would like to know the following differences and if these differences are stat. sig.: Unfortunately estimate_contrasts(model, transform = "none")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Difference | 95% CI | SE | t(147) | p
#> ------------------------------------------------------------------------------
#> setosa | versicolor | 0.21 | [ 0.16, 0.27] | 0.02 | 9.47 | < .001
#> setosa | virginica | 0.14 | [ 0.09, 0.20] | 0.02 | 6.28 | < .001
#> versicolor | virginica | -0.07 | [-0.13, -0.02] | 0.02 | -3.19 | 0.002
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979) Created on 2022-09-29 with reprex v2.0.2 So, with estimate_contrasts(model, transform = "response")
#> No variable was specified for contrast estimation. Selecting `contrast = "Species"`.
#> Marginal Contrasts Analysis
#>
#> Level1 | Level2 | Ratio | 95% CI | SE | t(147) | p
#> -----------------------------------------------------------------------
#> setosa | versicolor | 1.24 | [1.17, 1.31] | 0.03 | 9.47 | < .001
#> setosa | virginica | 1.15 | [1.09, 1.22] | 0.03 | 6.28 | < .001
#> versicolor | virginica | 0.93 | [0.88, 0.98] | 0.02 | -3.19 | 0.002
#>
#> Marginal contrasts estimated at Species
#> p-value adjustment method: Holm (1979) Created on 2022-09-29 with reprex v2.0.2 So, with I would like to not always have to calculate the differences of the back-transformed values by hand with |
Hello all,
I have an issue that maybe you can help me with. Whenever I have a model with log-transformed response e.g.,
model <- lm(log(Sepal.Width) ~ Species, data = iris)
the estimate_contrasts() function ignores the transform input:
estimate_contrasts(model, transform = "none")
estimate_contrasts(model, transform = "response")
the estimate_means() function on the other hand considers the transform input as desired:
estimate_means(model, transform = "none")
estimate_means(model, transform = "response")
Am I doing something wrong or did I misunderstood the transform input? How do I get the contrasts of the back-transformed response? Of course I could just manually subtract the estimated means but that is a lot of work when I have a lot of factor levels.
I should have everything up to date:
R version 4.2.1 (2022-06-23 ucrt) -- "Funny-Looking Kid"
RStudio 2022.07.1 Build 554
modelbased 0.8.5
Thank you very much.
Best regards
The text was updated successfully, but these errors were encountered: