-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_remote.py
320 lines (259 loc) · 11.1 KB
/
inference_remote.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import argparse, math, os, sys, io
import time, json
import edgeimpulse_api as ei
import requests
import base64
import numpy as np
from PIL import Image
if not os.getenv('EI_PROJECT_API_KEY'):
print('Missing EI_PROJECT_API_KEY')
sys.exit(1)
if not os.getenv('BEAM_ENDPOINT'):
print('Missing BEAM_ENDPOINT')
sys.exit(1)
if not os.getenv('BEAM_ACCESS_KEY'):
print('Missing BEAM_ACCESS_KEY')
sys.exit(1)
EI_API_KEY = os.environ.get("EI_PROJECT_API_KEY")
EI_API_ENDPOINT = os.environ.get("EI_API_ENDPOINT", "https://studio.edgeimpulse.com/v1")
BEAM_ENDPOINT = os.environ.get("BEAM_ENDPOINT", '')
BEAM_ACCESS_KEY = os.environ.get("BEAM_ACCESS_KEY", '')
parser = argparse.ArgumentParser(description="Zero-shot object detector (running in Beam.cloud)")
parser.add_argument("--prompt", type=str, required=True,
help='Items to detect, split by newlines. ' +
'Desired class name and min. confidence rating in parenthesis. E.g. "beer bottle (beer, 0.2)"')
parser.add_argument("--data-ids-file", type=str, required=True,
help='File with IDs (as JSON)')
parser.add_argument("--propose-actions", type=int, required=False,
help='If this flag is passed in, only propose suggested actions')
parser.add_argument("--delete_existing_bounding_boxes", type=str, required=True,
help='What to do with existing bounding boxes (either "no", "matching-prompt" or "yes")')
parser.add_argument("--nms", action='store_true',
help='Runs non-max suppression if passed in')
parser.add_argument("--nms-iou-threshold", required=False, type=float, default=0.2,
help='IOU threshold for NMS')
parser.add_argument("--ignore-objects-smaller-than", required=False, type=float,
help='If specified, ignores objects smaller than X%')
parser.add_argument("--ignore-objects-larger-than", required=False, type=float,
help='If specified, ignores objects larger than X%')
args, unknown = parser.parse_known_args()
configuration = ei.Configuration(host=EI_API_ENDPOINT)
configuration.api_key["ApiKeyAuthentication"] = EI_API_KEY
api = ei.ApiClient(configuration)
projects_api = ei.ProjectsApi(api)
raw_data_api = ei.RawDataApi(api)
EI_PROJECT_ID = projects_api.list_projects().projects[0].id
def box_iou_batch(
boxes_a: np.ndarray, boxes_b: np.ndarray
) -> np.ndarray:
def box_area(box):
return (box[2] - box[0]) * (box[3] - box[1])
area_a = box_area(boxes_a.T)
area_b = box_area(boxes_b.T)
top_left = np.maximum(boxes_a[:, None, :2], boxes_b[:, :2])
bottom_right = np.minimum(boxes_a[:, None, 2:], boxes_b[:, 2:])
area_inter = np.prod(
np.clip(bottom_right - top_left, a_min=0, a_max=None), 2)
return area_inter / (area_a[:, None] + area_b - area_inter)
def non_max_suppression(
predictions: np.ndarray, iou_threshold: float = 0.5
) -> np.ndarray:
rows, columns = predictions.shape
sort_index = np.flip(predictions[:, 4].argsort())
predictions = predictions[sort_index]
boxes = predictions[:, :4]
categories = predictions[:, 5]
ious = box_iou_batch(boxes, boxes)
ious = ious - np.eye(rows)
keep = np.ones(rows, dtype=bool)
for index, (iou, category) in enumerate(zip(ious, categories)):
if not keep[index]:
continue
condition = (iou > iou_threshold) & (categories == category)
keep = keep & ~condition
return keep[sort_index.argsort()]
# the replacement looks weird; but if calling this from CLI like "--prompt 'test\nanother line'" we'll get this still escaped
# (you could use $'test\nanotherline' but we won't do that in the Edge Impulse backend)
prompt = args.prompt.replace('\\n', '\n')
delete_existing = args.delete_existing_bounding_boxes
if delete_existing != 'no' and delete_existing != 'matching-prompt' and delete_existing != 'yes':
print('Invalid value for --delete_existing_bounding_boxes')
exit(1)
if args.data_ids_file:
with open(args.data_ids_file, 'r') as f:
data_ids = json.load(f)
objects = []
for line in prompt.splitlines():
if line == '': continue
parenthesis_start = line.rfind('(')
parenthesis_end = line.rfind(')')
if parenthesis_start != -1 and parenthesis_end != -1:
search_for = line[0:parenthesis_start].strip()
parenthesis = line[parenthesis_start+1:parenthesis_end]
if (',' in parenthesis):
label = parenthesis.split(',')[0].strip()
min_confidence = float(parenthesis.split(',')[1].strip())
else:
label = parenthesis.strip()
min_confidence = 0.0
else:
search_for = line.strip()
label = search_for
min_confidence = 0.0
objects.append({
'search_for': search_for,
'label': label,
'min_confidence': min_confidence
})
print('Labeling data using zero-shot object detection w/ google/owlv2-base-patch16-ensemble')
print('')
print('Detecting objects:')
print(' Prompts:')
for object in objects:
print(' - ' + object['search_for'] + ', label: ' + object['label'] + ', min confidence: ' + str(object['min_confidence']))
if (len(data_ids) < 6):
print(' IDs:', ', '.join([ str(x) for x in data_ids ]))
else:
print(' IDs:', ', '.join([ str(x) for x in data_ids[0:5] ]), 'and ' + str(len(data_ids) - 5) + ' others')
print('')
print('Note: it might take a minute to spin up a new GPU')
print('')
def current_ms():
return round(time.time() * 1000)
ix = 0
for data_id in data_ids:
ix = ix + 1
now = current_ms()
sample = (raw_data_api.get_sample(project_id=EI_PROJECT_ID, sample_id=data_id, proposed_actions_job_id=args.propose_actions)).sample
prefix = '[' + str(ix).rjust(len(str(len(data_ids))), ' ') + '/' + str(len(data_ids)) + ']'
print(prefix, 'Labeling ' + sample.filename + ' (ID ' + str(sample.id) + ')...', end='')
new_metadata = sample.metadata if sample.metadata else { }
new_metadata['labeled_by'] = 'owlv2'
new_metadata['prompt'] = prompt
res = requests.get(url=EI_API_ENDPOINT + '/api/' + str(EI_PROJECT_ID) + '/raw-data/' + str(data_id) + '/image',
headers={
'x-api-key': EI_API_KEY,
},
)
if (res.status_code != 200):
raise Exception('Failed to fetch sample from Edge Impulse (status_code=' + str(res.status_code) + '): ' + res.content.decode("utf-8"))
image = Image.open(io.BytesIO(res.content)).convert("RGB")
image_width, image_height = image.size
image_area = image_width * image_height
body = json.dumps({
'base64_image': base64.b64encode(res.content).decode('utf-8'),
'labels': [x['search_for'] for x in objects],
})
print(' Running inference...', end='')
res = requests.post(url=BEAM_ENDPOINT,
headers={
'Authorization': 'Bearer ' + BEAM_ACCESS_KEY,
'Content-Type': 'application/json',
},
data=body
)
if (res.status_code != 200):
raise Exception('Failed to classify sample (status_code=' + str(res.status_code) + '): ' + res.content.decode("utf-8"))
# print('res.content', res.content)
predictions = json.loads(res.content.decode('utf-8'))['predictions']
# print('predictions', predictions)
prediction_time = current_ms() - now
objects_by_search_for = {}
labels_in_prompt = []
for o in objects:
objects_by_search_for[o['search_for']] = o
labels_in_prompt.append(o['label'])
bbs = []
if delete_existing == 'no':
bbs = sample.bounding_boxes
elif delete_existing == 'matching-prompt':
for bb in sample.bounding_boxes:
if (not bb.label in labels_in_prompt):
bbs.append(bb)
elif delete_existing == 'yes':
bbs = [] # <-- clear out all bounding boxes
prediction_per_label = {}
for prediction in predictions:
object = objects_by_search_for[prediction['label']]
box = prediction["box"]
label = prediction["label"]
score = prediction["score"]
if (score < object['min_confidence']): continue
xmin, ymin, xmax, ymax = box.values()
area_px = (xmax - xmin) * (ymax - ymin)
bb_area = (area_px / image_area) * 100
if args.ignore_objects_smaller_than:
if (bb_area < args.ignore_objects_smaller_than):
continue
if args.ignore_objects_larger_than:
if (bb_area > args.ignore_objects_larger_than):
continue
if not object['label'] in prediction_per_label.keys():
prediction_per_label[object['label']] = []
prediction_per_label[object['label']].append({
'label': object['label'],
'x': xmin,
'y': ymin,
'width': xmax - xmin,
'height': ymax - ymin,
'score': score,
})
for label in prediction_per_label.keys():
# With NMS
if (args.nms):
# (x_min, y_min, x_max, y_max
in_boxes = [
[box['x'], box['y'], box['x'] + box['width'], box['y'] + box['height'], box['score'], 0] for box in prediction_per_label[label]
]
# print('in_boxes', in_boxes)
out_boxes = non_max_suppression(np.array(in_boxes), iou_threshold=args.nms_iou_threshold)
# print('out_boxes', out_boxes)
for i in range(0, len(out_boxes)):
if out_boxes[i] == False:
continue
bb = prediction_per_label[label][i]
bbs.append({
'label': label,
'x': bb['x'],
'y': bb['y'],
'width': bb['width'],
'height': bb['height'],
})
else:
# non-NMS
for bb in prediction_per_label[label]:
bbs.append({
'label': label,
'x': bb['x'],
'y': bb['y'],
'width': bb['width'],
'height': bb['height'],
})
if args.propose_actions:
raw_data_api.set_sample_proposed_changes(project_id=EI_PROJECT_ID, sample_id=data_id, set_sample_proposed_changes_request={
'jobId': args.propose_actions,
'proposedChanges': {
'boundingBoxes': bbs,
'metadata': new_metadata,
},
})
else:
raw_data_api.set_sample_bounding_boxes(project_id=EI_PROJECT_ID, sample_id=data_id, sample_bounding_boxes_request={
'boundingBoxes': bbs
})
raw_data_api.set_sample_metadata(project_id=EI_PROJECT_ID, sample_id=data_id, set_sample_metadata_request={
'metadata': new_metadata
})
print(' OK (took ' + str(prediction_time) + 'ms.)')
print(' Found objects:')
for p in predictions:
box = p["box"]
label = p["label"]
score = p["score"]
xmin, ymin, xmax, ymax = box.values()
object = objects_by_search_for[prediction['label']]
below_min_threshold_msg = '(below min. threshold)' if score < object['min_confidence'] else ''
print(' %s (%f), x=%d y=%d w=%d h=%d %s' %
(label, score, xmin, ymin, (xmax - xmin), (ymax - ymin), below_min_threshold_msg))
print('')
print('All done!')