forked from DidrikF/automated-trading-system
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_and_performance_visualization.py
66 lines (54 loc) · 1.73 KB
/
model_and_performance_visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_score, recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import roc_curve, auc
def plot_feature_importances(estimator, cols):
y = estimator.feature_importances_
fig, ax = plt.subplots()
width = 0.4 # the width of the bars
ind = np.arange(len(y)) # the x locations for the groups
ax.barh(ind, y, width, color="green")
ax.set_yticks(ind+width/10)
ax.set_yticklabels(cols, minor=False)
plt.title("Feature importance in RandomForest Classifier")
plt.xlabel("Relative importance")
plt.ylabel("feature")
plt.figure(figsize=(5,5))
fig.set_size_inches(6.5, 4.5, forward=True)
plt.show()
def plot_history(history):
"""
Plot how the loss function developed over the epochs, see the error on both training and validation sets
"""
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
plt.figure()
plt.xlabel('Epoch')
plt.ylabel('Mean Square Error')
plt.plot(
hist['epoch'],
hist['mean_squared_error'],
label='Training Error'
)
plt.plot(
hist['epoch'],
hist['val_mean_squared_error'],
label = 'Validation Error'
)
plt.ylim([0,20])
plt.legend()
plt.show()
def plot_error(y_true, y_pred):
"""
Plot prediction errors as a histogram. Prediction error size at the x-axis and
number of occurrences at the y-axis.
"""
error = y_pred - y_true
plt.hist(error, bins = 25)
plt.xlabel("Prediction Error")
_ = plt.ylabel("Count")
plt.show()