-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsouthNorthAttack.py
80 lines (64 loc) · 3.14 KB
/
southNorthAttack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from hmmlearn import hmm
import numpy as np
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
if __name__ == "__main__":
print("South North Attack HMM - armasuisse W+T, Adrian Schneider")
print("#########################################################\n")
# initialization of random seed: guarantees repeatability of experiment
randomSeed = 28
# first state probability: Fog Cloud Sun
startStateProb = np.array([1/3, 1/3, 1/3])
# state transition probability matrix: Fog Cloud Sun
stateTransMat = np.array( [
# Fog Cloud Sun
[0.3, 0.4, 0.3], # transitions from state fog
[0.2, 0.5, 0.3], # transitions from state cloud
[0.2, 0.2, 0.6] # transitions from state sun
] )
stateEmissionProb = np.array( [
# North South
[0.4, 0.6], # attacking side when fog
[0.2, 0.8], # attacking side when cloud
[0.8, 0.2] # attacking side when sun
])
# init hmm
attackHMM = hmm.CategoricalHMM( n_components=3, random_state=randomSeed )
attackHMM.startprob_ = startStateProb
attackHMM.transmat_ = stateTransMat
attackHMM.emissionprob_ = stateEmissionProb
# sample the hmm and create attacking statistics
nSamples = 100000
attackSides, hiddenStates = attackHMM.sample(nSamples)
northProb = np.count_nonzero(attackSides == 0) / nSamples
southProb = np.count_nonzero(attackSides == 1) / nSamples
print("Sampling HMM n=", nSamples)
print("North Attack Probability:", northProb)
print("South Attack Probability:", southProb)
cntAtks = [[0, 0, 0], [0, 0, 0]]
for ats, hs in zip(attackSides, hiddenStates):
cntAtks[ats[0]][hs] += 1
# predict next days' attack side based on last 12 days observation
# note: documentation is somehow bad
nextDayNorthLogProb = np.array([[0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0]])
nextDaySouthLogProb = np.array([[0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1]])
print("Likely attack tomorrow:")
print("North:", attackHMM.score(nextDayNorthLogProb))
print("South:", attackHMM.score(nextDaySouthLogProb))
nBars = 2
fogCnts = (cntAtks[0][0], cntAtks[1][0])
cloudCnts = (cntAtks[0][1], cntAtks[1][1])
sunCnts = (cntAtks[0][2], cntAtks[1][2])
basePlotSun = (cntAtks[0][0]+cntAtks[0][1], cntAtks[1][0]+cntAtks[1][1])
ind = np.arange(2) # the x locations for the groups
width = 0.25
plt.bar(ind, fogCnts, width, color='r')
plt.bar(ind, cloudCnts, width, bottom=fogCnts, color='b')
plt.bar(ind, sunCnts, width, bottom=basePlotSun, color='g')
plt.ylabel('Counts')
plt.xlabel('Attack Side')
plt.title('Attack Side by Reason (n=' + str(nSamples) + ')')
plt.xticks(ind, ('North', 'South'))
plt.legend(labels=['Foggy', 'Cloudy', 'Sunny'])
plt.show()