|
| 1 | +import marimo as mo |
| 2 | + |
| 3 | +__generated_with__ = "0.6.15" |
| 4 | + |
| 5 | +app = mo.App() |
| 6 | + |
| 7 | + |
| 8 | +@app.cell |
| 9 | +def __(): |
| 10 | + import marimo as mo |
| 11 | + |
| 12 | + mo.md( |
| 13 | + """ |
| 14 | + # Color-coded projection and CLAHE demo |
| 15 | +
|
| 16 | + This notebook demonstrates how to use the |
| 17 | + `color_coded_projection` and `_my_clahe_` utilities provided in this |
| 18 | + repository. We load the sample `cells3d` dataset from scikit-image and |
| 19 | + showcase both functions: |
| 20 | +
|
| 21 | + * **color_coded_projection** for creating a time/volume color projection |
| 22 | + * **_my_clahe_** for applying Contrast Limited Adaptive Histogram Equalization (CLAHE) |
| 23 | +
|
| 24 | + Use the controls below to explore different color mappings for the |
| 25 | + projection and adjust the CLAHE clip limit to see its effect on the |
| 26 | + enhanced slice. |
| 27 | + """ |
| 28 | + ) |
| 29 | + |
| 30 | + |
| 31 | +@app.cell |
| 32 | +def __(): |
| 33 | + import matplotlib.pyplot as plt |
| 34 | + import numpy as np |
| 35 | + from skimage import data |
| 36 | + |
| 37 | + from clahe_equalize_adapthist import _my_clahe_ |
| 38 | + from color_coded_projection import color_coded_projection |
| 39 | + |
| 40 | + return plt, np, data, _my_clahe_, color_coded_projection |
| 41 | + |
| 42 | + |
| 43 | +@app.cell |
| 44 | +def __(): |
| 45 | + import marimo as mo |
| 46 | + |
| 47 | + colormap_dropdown = mo.ui.dropdown( |
| 48 | + label="Projection colormap", |
| 49 | + options=[ |
| 50 | + ("Plasma", "plasma"), |
| 51 | + ("Viridis", "viridis"), |
| 52 | + ("Inferno", "inferno"), |
| 53 | + ("Magma", "magma"), |
| 54 | + ("Cividis", "cividis"), |
| 55 | + ], |
| 56 | + value="plasma", |
| 57 | + ) |
| 58 | + |
| 59 | + colormap_dropdown |
| 60 | + |
| 61 | + return colormap_dropdown |
| 62 | + |
| 63 | + |
| 64 | +@app.cell |
| 65 | +def __(): |
| 66 | + import marimo as mo |
| 67 | + |
| 68 | + clahe_clip_slider = mo.ui.slider( |
| 69 | + label="CLAHE clip limit", |
| 70 | + start=0.01, |
| 71 | + stop=0.1, |
| 72 | + step=0.005, |
| 73 | + value=0.03, |
| 74 | + ) |
| 75 | + |
| 76 | + clahe_clip_slider |
| 77 | + |
| 78 | + return clahe_clip_slider |
| 79 | + |
| 80 | + |
| 81 | +@app.cell |
| 82 | +def __(data): |
| 83 | + cells = data.cells3d() |
| 84 | + # Select the membrane channel (index 1) |
| 85 | + membrane_stack = cells[:, 1, :, :] |
| 86 | + return membrane_stack |
| 87 | + |
| 88 | + |
| 89 | +@app.cell |
| 90 | +def __(membrane_stack, np): |
| 91 | + # Normalize the stack to the range [0, 1] |
| 92 | + stack_min = membrane_stack.min() |
| 93 | + stack_max = membrane_stack.max() |
| 94 | + normalized_stack = (membrane_stack - stack_min) / (stack_max - stack_min) |
| 95 | + return normalized_stack |
| 96 | + |
| 97 | + |
| 98 | +@app.cell |
| 99 | +def __(color_coded_projection, colormap_dropdown, normalized_stack, np): |
| 100 | + projection = color_coded_projection( |
| 101 | + normalized_stack.astype(np.float32), |
| 102 | + color_map=colormap_dropdown.value, |
| 103 | + ) |
| 104 | + return projection |
| 105 | + |
| 106 | + |
| 107 | +@app.cell |
| 108 | +def __(colormap_dropdown, projection, plt): |
| 109 | + fig, ax = plt.subplots(figsize=(5, 5)) |
| 110 | + ax.imshow(projection) |
| 111 | + ax.set_title( |
| 112 | + f"Color-coded projection of membrane channel (cmap: {colormap_dropdown.value})" |
| 113 | + ) |
| 114 | + ax.axis("off") |
| 115 | + fig.tight_layout() |
| 116 | + fig |
| 117 | + |
| 118 | + |
| 119 | +@app.cell |
| 120 | +def __(membrane_stack): |
| 121 | + slice_index = 30 |
| 122 | + original_slice = membrane_stack[slice_index] |
| 123 | + return original_slice, slice_index |
| 124 | + |
| 125 | + |
| 126 | +@app.cell |
| 127 | +def __(_my_clahe_, clahe_clip_slider, original_slice): |
| 128 | + clahe_slice = _my_clahe_( |
| 129 | + original_slice, |
| 130 | + clip_limit=float(clahe_clip_slider.value), |
| 131 | + nbins=256, |
| 132 | + ) |
| 133 | + return clahe_slice |
| 134 | + |
| 135 | + |
| 136 | +@app.cell |
| 137 | +def __(clahe_clip_slider, clahe_slice, original_slice, plt, slice_index): |
| 138 | + fig, axes = plt.subplots(1, 2, figsize=(10, 4)) |
| 139 | + axes[0].imshow(original_slice, cmap="gray") |
| 140 | + axes[0].set_title(f"Original slice {slice_index}") |
| 141 | + axes[0].axis("off") |
| 142 | + |
| 143 | + axes[1].imshow(clahe_slice, cmap="gray") |
| 144 | + axes[1].set_title( |
| 145 | + f"CLAHE enhanced slice (clip_limit={float(clahe_clip_slider.value):.3f})" |
| 146 | + ) |
| 147 | + axes[1].axis("off") |
| 148 | + |
| 149 | + fig.tight_layout() |
| 150 | + fig |
| 151 | + |
| 152 | + |
| 153 | +if __name__ == "__main__": |
| 154 | + app.run() |
0 commit comments