Skip to content

One-stage rerank results are suspiciously poor #2933

@Steel-faced-Duke

Description

@Steel-faced-Duke

Describe the bug

I just annotate stage 1 code to get rerank results by CrossEncoder directly, but the rerank results are very poor, code is like this:

from mteb import MTEB
import mteb
from sentence_transformers import CrossEncoder, SentenceTransformer

dual_encoder = SentenceTransformer("all-MiniLM-L6-v2")

cross_encoder = CrossEncoder("cross-encoder/ms-marco-TinyBERT-L-2-v2")

tasks = mteb.get_tasks(tasks=["NFCorpus"], languages=["eng"])

subset = "default" # subset name used in the NFCorpus dataset
eval_splits = ["test"]

evaluation = MTEB(tasks=tasks)
# evaluation.run(#no stage 1
#    dual_encoder,
#    eval_splits=eval_splits,
#    save_predictions=True,
#    output_folder="results/stage1",
# )
evaluation.run(
    cross_encoder,
    eval_splits=eval_splits,
    # top_k=500,
    save_predictions=True,
    output_folder="results/stage2",
    # previous_results=f"results/stage1/NFCorpus_{subset}_predictions.json", # get results directly by CrossEncoder
)

here is some of the stage 1 results when I made this change before:

        "recall_at_1": 0.04323,
        "recall_at_3": 0.09053,
        "recall_at_5": 0.11959,
        "recall_at_10": 0.15499,
        "recall_at_20": 0.18891,
        "recall_at_100": 0.31151,
        "recall_at_1000": 0.63211,
        "precision_at_1": 0.41486,
        "precision_at_3": 0.34881,
        "precision_at_5": 0.30279,
        "precision_at_10": 0.24334,
        "precision_at_20": 0.17817,
        "precision_at_100": 0.07981,
        "precision_at_1000": 0.02096,

and this is the result directly by CrossEncoder:

        "recall_at_1": 0.00784,
        "recall_at_3": 0.01523,
        "recall_at_5": 0.01939,
        "recall_at_10": 0.02783,
        "recall_at_20": 0.03382,
        "recall_at_100": 0.05049,
        "recall_at_1000": 0.12993,
        "precision_at_1": 0.13313,
        "precision_at_3": 0.11765,
        "precision_at_5": 0.10774,
        "precision_at_10": 0.08545,
        "precision_at_20": 0.0596,
        "precision_at_100": 0.02201,
        "precision_at_1000": 0.00699,

Running a single CrossEncoder , the results should be much better than a single SentenceTransformer,but it is not, so what is the problem?

Here is my environment:
sentence-transformers 5.0.0
mteb 1.38.35

To reproduce

I just use the official rerank code and annotate the stage 1(as the discription) to reproduce,here is the official rerank code:

from mteb import MTEB
import mteb
from sentence_transformers import CrossEncoder, SentenceTransformer

cross_encoder = CrossEncoder("cross-encoder/ms-marco-TinyBERT-L-2-v2")
dual_encoder = SentenceTransformer("all-MiniLM-L6-v2")

tasks = mteb.get_tasks(tasks=["NFCorpus"], languages=["eng"])

subset = "default" # subset name used in the NFCorpus dataset
eval_splits = ["test"]

evaluation = MTEB(tasks=tasks)
evaluation.run(
    dual_encoder,
    eval_splits=eval_splits,
    save_predictions=True,
    output_folder="results/stage1",
)
evaluation.run(
    cross_encoder,
    eval_splits=eval_splits,
    top_k=5,
    save_predictions=True,
    output_folder="results/stage2",
    previous_results=f"results/stage1/NFCorpus_{subset}_predictions.json",
)

Additional information

No response

Are you interested to contribute a fix for this bug?

No

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions