-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_28nm.py
136 lines (87 loc) · 4.58 KB
/
run_28nm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python3
import sys
import time
from chipsuite import GDSLoader, StitchingInfo, BboxGenerator, FakePowerLineDetector, PowerLineDetector, Algorithm, Algorithm2, Algorithm3_4, CellIdentifier
BENCHMARK = True
if sys.argv[1] == "fill":
ALGORITHM = 2
elif sys.argv[1] == "std":
ALGORITHM = 3
else:
print('Unsupported algorithm argument. Possible options are: "fill", "std".', file=sys.stderr)
sys.exit(1)
t = time.process_time()
t2 = time.monotonic()
print(f"It is now: {time.strftime('%c')}")
starttime = time.strftime('%c')
IMAGE_EDGES = [[2965, 3905.98], [204515.97, 3232], [205260.64, 204506.74], [3518.89, 205231.10]] # 4-edge transformation
gdsloader = GDSLoader()
gdsloader.load_gds("data/28nm/28nm.gds", IMAGE_EDGES, "R180", not BENCHMARK)
stitching_info = StitchingInfo()
stitching_info.load_mist_file("data/28nm/img-global-positions-0.txt")
stitching_info.set_image_folder("data/28nm/tiles")
stitching_info.parse_stitching_info()
bbox_generator = BboxGenerator(gdsloader.bboxes, stitching_info)
CORR_X_DATA = [
[0, -30, -48, -53, -66, -83, -80, -60, -43, -27, 6, 0],
[-10, -24, -52, -48, -66, -60, -62, -54, -32, -4, 26, 37],
[1, -29, -37, -52, -51, -79, -51, -41, -21, -3, 21, 49],
[1, -13, -45, -52, -58, -63, -61, -43, -35, -16, 12, 51],
[16, 3, -50, -57, -61, -71, -51, -35, -17, -9, 17, 44],
[7, -13, -45, -39, -58, -64, -56, -36, -35, -15, 1, 20],
[-7, -21, -30, -42, -50, -60, -70, -51, -30, -8, 7, 27],
[-5, -4, -41, -46, -57, -56, -76, -66, -42, -35, 6, 33],
[0, -12, -53, -46, -66, -77, -85, -82, -58, -35, -35, 7],
[-13, -22, -33, -49, -60, -75, -73, -59, -59, -52, -24, -12],
[-6, -16, -23, -33, -49, -59, -44, -50, -49, -47, -27, -13],
[0, 3, -22, -40, -51, -52, -56, -45, -37, -41, -26, -4],
]
CORR_Y_DATA = [
[0, 0, -10, -20, -21, -21, -21, -18, -16, -4, 0, 0],
[-41, -45, -48, -51, -52, -52, -50, -45, -42, -37, -34, -34],
[-68, -72, -69, -68, -70, -69, -67, -63, -63, -60, -59, -56],
[-85, -84, -86, -85, -82, -81, -81, -77, -75, -73, -75, -70],
[-96, -92, -90, -88, -89, -88, -85, -83, -80, -79, -79, -76],
[-100, -95, -94, -90, -93, -89, -89, -85, -85, -84, -83, -80],
[-97, -97, -94, -93, -93, -91, -92, -86, -87, -86, -84, -82],
[-89, -90, -86, -86, -83, -84, -81, -79, -82, -81, -79, -79],
[-80, -78, -76, -75, -74, -72, -69, -69, -69, -67, -70, -67],
[-64, -62, -59, -56, -53, -53, -52, -53, -54, -52, -53, -53],
[-34, -36, -32, -32, -30, -29, -27, -29, -30, -29, -28, -30],
[0, 2, 1, 5, 7, 6, 6, 6, 4, 5, 1, 0],
]
bbox_generator.set_corr_x(lambda x, y, px: BboxGenerator.corr_table(x, y, px, CORR_X_DATA) + (20 if x == 51 and y == 38 else 0))
bbox_generator.set_corr_y(lambda x, y, py: BboxGenerator.corr_table(x, y, py, CORR_Y_DATA))
# no power line detector, as it yields to too many wrong detections
powerline_detector = FakePowerLineDetector(PowerLineDetector.DIR_X)
if ALGORITHM == 2:
algorithm = Algorithm2(bbox_generator, stitching_info, powerline_detector)
algorithm.set_html_output("28nm_fill_to_std.html")
algorithm.set_filler_optimal_repeat(27) # this value is the usual width between two horizontal repititions in the filler cells
algorithm.set_filler_score_threshold(0.38)
# X-Blur is doubled as there are these annoying vertical "fences" in the 28nm chip
algorithm.set_blur_values(23, 11, True)
algorithm.set_adaptive_threshold_values(11, -4)
algorithm.set_erode_dilate_values(3, 3)
algorithm.set_via_values(2, 15, 202, 0.6, 1)
algorithm.set_cell_crop(10, 20, 30, 35)
elif ALGORITHM == 3:
algorithm = Algorithm3_4(bbox_generator, stitching_info, powerline_detector)
algorithm.set_html_output("28nm_std_to_std.html")
algorithm.set_correlation_value(1.0)
algorithm.set_via_correlation_value(0.047)
algorithm.set_blur_values(23, 11, True)
algorithm.set_adaptive_threshold_values(7, -1)
algorithm.set_erode_dilate_values(2, 3)
algorithm.set_via_values(2, 15, 50, 0.6, 1)
algorithm.set_cell_identifier(CellIdentifier(algorithm))
algorithm.prepare()
algorithm.bboxes_on_edge = False
algorithm.set_cell_crop(-15, 10, -15, 10)
algorithm.set_fract(8) # 1/n for the fused image
algorithm.set_interactive_mode(not BENCHMARK, 0)
algorithm.set_output_folder("output")
algorithm.analyze(Algorithm.MODE_ONLY_CELLS+1 if ALGORITHM >= 3 else Algorithm.MODE_DEFAULT, starttime, (10, 10))
print(f"Completed. Benchmark time of 28nm Algorithm {ALGORITHM}: {time.process_time() - t}")
print(f"Real time of 28nm Algorithm {ALGORITHM}: {time.monotonic() - t2}")
print(f"It is now: {time.strftime('%c')}")