-
Notifications
You must be signed in to change notification settings - Fork 6.1k
/
Copy pathTypes.h
1744 lines (1488 loc) · 69.3 KB
/
Types.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
/**
* @author Christian <[email protected]>
* @date 2014
* Solidity data types
*/
#pragma once
#include <libsolidity/ast/ASTEnums.h>
#include <libsolidity/ast/ASTForward.h>
#include <libsolidity/parsing/Token.h>
#include <liblangutil/Exceptions.h>
#include <libsolutil/Common.h>
#include <libsolutil/Numeric.h>
#include <libsolutil/CommonIO.h>
#include <libsolutil/LazyInit.h>
#include <libsolutil/Result.h>
#include <boost/rational.hpp>
#include <map>
#include <memory>
#include <optional>
#include <set>
#include <string>
#include <utility>
namespace solidity::frontend
{
class TypeProvider;
class Type; // forward
class FunctionType; // forward
using FunctionTypePointer = FunctionType const*;
using TypePointers = std::vector<Type const*>;
using rational = boost::rational<bigint>;
using TypeResult = util::Result<Type const*>;
using BoolResult = util::Result<bool>;
}
namespace solidity::frontend
{
inline rational makeRational(bigint const& _numerator, bigint const& _denominator)
{
solAssert(_denominator != 0, "division by zero");
// due to a bug in certain versions of boost the denominator has to be positive
if (_denominator < 0)
return rational(-_numerator, -_denominator);
else
return rational(_numerator, _denominator);
}
enum class DataLocation { Storage, Transient, CallData, Memory };
/**
* Helper class to compute storage offsets of members of structs and contracts.
*/
class StorageOffsets
{
public:
/// Resets the StorageOffsets objects and determines the position in storage for each
/// of the elements of @a _types.
/// Calculated positions are absolute and start at @a _baseSlot.
/// Assumes that @a _types is small enough to fit in the area between @a _baseSlot and the end of storage
/// (the caller is responsible for validating that).
void computeOffsets(TypePointers const& _types, u256 _baseSlot = 0);
/// @returns the offset of the given member, might be null if the member is not part of storage.
std::pair<u256, unsigned> const* offset(size_t _index) const;
/// @returns the total number of slots occupied by all members.
u256 const& storageSize() const { return m_storageSize; }
private:
u256 m_storageSize;
std::map<size_t, std::pair<u256, unsigned>> m_offsets;
};
/**
* List of members of a type.
*/
class MemberList
{
public:
struct Member
{
/// Manual constructor for members that are not taken from a declaration.
Member(char const* _name, Type const* _type):
name(_name),
type(_type),
declaration(nullptr)
{
}
/// Constructs a Member with the name extracted from @p _declaration's name.
Member(Declaration const* _declaration, Type const* _type);
Member(Declaration const* _declaration, Type const* _type, std::string _name);
std::string name;
Type const* type = nullptr;
Declaration const* declaration = nullptr;
};
using MemberMap = std::vector<Member>;
explicit MemberList(MemberMap _members): m_memberTypes(std::move(_members)) {}
void combine(MemberList const& _other);
Type const* memberType(std::string const& _name) const
{
Type const* type = nullptr;
for (auto const& it: m_memberTypes)
if (it.name == _name)
{
solAssert(!type, "Requested member type by non-unique name.");
type = it.type;
}
return type;
}
MemberMap membersByName(std::string const& _name) const
{
MemberMap members;
for (auto const& it: m_memberTypes)
if (it.name == _name)
members.push_back(it);
return members;
}
/// @returns the offset of the given member in storage slots and bytes inside a slot or
/// a nullptr if the member is not part of storage.
std::pair<u256, unsigned> const* memberStorageOffset(std::string const& _name) const;
/// @returns the number of storage slots occupied by the members.
u256 const& storageSize() const;
MemberMap::const_iterator begin() const { return m_memberTypes.begin(); }
MemberMap::const_iterator end() const { return m_memberTypes.end(); }
private:
StorageOffsets const& storageOffsets() const;
MemberMap m_memberTypes;
util::LazyInit<StorageOffsets> m_storageOffsets;
};
static_assert(std::is_nothrow_move_constructible<MemberList>::value, "MemberList should be noexcept move constructible");
/**
* Abstract base class that forms the root of the type hierarchy.
*/
class Type
{
public:
Type() = default;
Type(Type const&) = delete;
Type(Type&&) = delete;
Type& operator=(Type const&) = delete;
Type& operator=(Type&&) = delete;
virtual ~Type() = default;
enum class Category
{
Address,
Integer,
RationalNumber,
StringLiteral,
Bool,
FixedPoint,
Array,
ArraySlice,
FixedBytes,
Contract,
Struct,
Function,
Enum,
UserDefinedValueType,
Tuple,
Mapping,
TypeType,
Modifier,
Magic,
Module,
InaccessibleDynamic
};
/// @returns a pointer to _a or _b if the other is implicitly convertible to it or nullptr otherwise
static Type const* commonType(Type const* _a, Type const* _b);
virtual Category category() const = 0;
/// @returns a valid solidity identifier such that two types should compare equal if and
/// only if they have the same identifier.
/// The identifier should start with "t_".
/// Can contain characters which are invalid in identifiers.
virtual std::string richIdentifier() const = 0;
/// @returns a valid solidity identifier such that two types should compare equal if and
/// only if they have the same identifier.
/// The identifier should start with "t_".
/// Will not contain any character which would be invalid as an identifier.
std::string identifier() const;
/// More complex identifier strings use "parentheses", where $_ is interpreted as
/// "opening parenthesis", _$ as "closing parenthesis", _$_ as "comma" and any $ that
/// appears as part of a user-supplied identifier is escaped as _$$$_.
/// @returns an escaped identifier (will not contain any parenthesis or commas)
static std::string escapeIdentifier(std::string const& _identifier);
virtual BoolResult isImplicitlyConvertibleTo(Type const& _other) const { return *this == _other; }
virtual BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const
{
return isImplicitlyConvertibleTo(_convertTo);
}
/// @returns the resulting type of applying the given unary operator or an empty pointer if
/// this is not possible.
/// The default implementation does not allow any unary operator.
virtual TypeResult unaryOperatorResult(Token) const { return nullptr; }
/// @returns the resulting type of applying the given binary operator or an empty pointer if
/// this is not possible.
/// The default implementation allows comparison operators if a common type exists
virtual TypeResult binaryOperatorResult(Token _operator, Type const* _other) const
{
return TokenTraits::isCompareOp(_operator) ? commonType(this, _other) : nullptr;
}
virtual bool operator==(Type const& _other) const { return category() == _other.category(); }
virtual bool operator!=(Type const& _other) const { return !this->operator ==(_other); }
/// @returns number of bytes used by this type when encoded for CALL. Cannot be used for
/// dynamically encoded types.
/// Always returns a value greater than zero and throws if the type cannot be encoded in calldata
/// (or is dynamically encoded).
/// If @a _padded then it is assumed that each element is padded to a multiple of 32 bytes.
virtual unsigned calldataEncodedSize([[maybe_unused]] bool _padded) const { solAssert(false, ""); }
/// Convenience version of @see calldataEncodedSize(bool)
unsigned calldataEncodedSize() const { return calldataEncodedSize(true); }
/// @returns the distance between two elements of this type in a calldata array, tuple or struct.
/// For statically encoded types this is the same as calldataEncodedSize(true).
/// For dynamically encoded types this is the distance between two tail pointers, i.e. 32.
/// Always returns a value greater than zero and throws if the type cannot be encoded in calldata.
unsigned calldataHeadSize() const { return isDynamicallyEncoded() ? 32 : calldataEncodedSize(true); }
/// @returns the (minimal) size of the calldata tail for this type. Can only be used for
/// dynamically encoded types. For dynamically-sized arrays this is 32 (the size of the length),
/// for statically-sized, but dynamically encoded arrays this is 32*length(), for structs
/// this is the sum of the calldataHeadSize's of its members.
/// Always returns a value greater than zero and throws if the type cannot be encoded in calldata
/// (or is not dynamically encoded).
virtual unsigned calldataEncodedTailSize() const { solAssert(false, ""); }
/// @returns the size of this data type in bytes when stored in memory. For memory-reference
/// types, this is the size of the memory pointer.
virtual unsigned memoryHeadSize() const { return calldataEncodedSize(); }
/// @returns the size of this data type in bytes when stored in memory. For memory-reference
/// types, this is the size of the actual data area, if it is statically-sized.
virtual u256 memoryDataSize() const { return calldataEncodedSize(); }
/// @returns true if the type is a dynamic array
virtual bool isDynamicallySized() const { return false; }
/// @returns true if the type is dynamically encoded in the ABI
virtual bool isDynamicallyEncoded() const { return false; }
/// @returns the number of storage slots required to hold this value in storage.
/// For dynamically "allocated" types, it returns the size of the statically allocated head,
virtual u256 storageSize() const { return 1; }
/// @returns an upper bound on the total storage size required by this type, descending
/// into structs and statically-sized arrays. This is mainly to ensure that the storage
/// slot allocation algorithm does not overflow, it is not a protection against collisions.
virtual bigint storageSizeUpperBound() const { return 1; }
/// Multiple small types can be packed into a single storage slot. If such a packing is possible
/// this function @returns the size in bytes smaller than 32. Data is moved to the next slot if
/// it does not fit.
/// In order to avoid computation at runtime of whether such moving is necessary, structs and
/// array data (not each element) always start a new slot.
virtual unsigned storageBytes() const { return 32; }
/// Returns true if the type is a value type that is left-aligned on the stack with a size of
/// storageBytes() bytes. Returns false if the type is a value type that is right-aligned on
/// the stack with a size of storageBytes() bytes. Asserts if it is not a value type or the
/// encoding is more complicated.
/// Signed integers are not considered "more complicated" even though they need to be
/// sign-extended.
virtual bool leftAligned() const { solAssert(false, "Alignment property of non-value type requested."); }
/// Returns true if the type can be stored in storage.
virtual bool canBeStored() const { return true; }
/// Returns false if the type cannot live outside the storage, i.e. if it includes some mapping.
virtual bool containsNestedMapping() const
{
solAssert(nameable(), "Called for a non nameable type.");
return false;
}
/// Returns true if the type can be stored as a value (as opposed to a reference) on the stack,
/// i.e. it behaves differently in lvalue context and in value context.
virtual bool isValueType() const { return false; }
/// @returns true if this type can be used for variables. It returns false for
/// types like magic types, literals and function types with a kind that is not
/// internal or external.
virtual bool nameable() const { return false; }
/// @returns a list of named and typed stack items that determine the layout of this type on the stack.
/// A stack item either has an empty name and type ``nullptr`` referring to a single stack slot, or
/// has a non-empty name and a valid type referring to the stack layout of that type.
/// The complete layout of a type on the stack can be obtained from its stack items recursively as follows:
/// - Each unnamed stack item is untyped (its type is ``nullptr``) and contributes exactly one stack slot.
/// - Each named stack item is typed and contributes the stack slots given by the stack items of its type.
std::vector<std::tuple<std::string, Type const*>> const& stackItems() const
{
if (!m_stackItems)
m_stackItems = makeStackItems();
return *m_stackItems;
}
/// Total number of stack slots occupied by this type. This is the sum of ``sizeOnStack`` of all ``stackItems()``.
// TODO: consider changing the return type to be size_t
unsigned sizeOnStack() const
{
if (!m_stackSize)
{
size_t sizeOnStack = 0;
for (auto const& slot: stackItems())
if (std::get<1>(slot))
sizeOnStack += std::get<1>(slot)->sizeOnStack();
else
++sizeOnStack;
m_stackSize = sizeOnStack;
}
return static_cast<unsigned>(*m_stackSize);
}
/// If it is possible to initialize such a value in memory by just writing zeros
/// of the size memoryHeadSize().
virtual bool hasSimpleZeroValueInMemory() const { return true; }
/// @returns the mobile (in contrast to static) type corresponding to the given type.
/// This returns the corresponding IntegerType or FixedPointType for RationalNumberType
/// and the pointer type for storage reference types.
/// Might return a null pointer if there is no fitting type.
virtual Type const* mobileType() const { return this; }
/// @returns true if this is a non-value type and the data of this type is stored at the
/// given location.
virtual bool dataStoredIn(DataLocation) const { return false; }
/// Returns the list of all members of this type. Default implementation: no members apart from attached functions.
/// @param _currentScope scope in which the members are accessed.
MemberList const& members(ASTNode const* _currentScope) const;
/// Convenience method, returns the type of the given named member or an empty pointer if no such member exists.
Type const* memberType(std::string const& _name, ASTNode const* _currentScope = nullptr) const
{
return members(_currentScope).memberType(_name);
}
virtual std::string toString(bool _withoutDataLocation) const = 0;
std::string toString() const { return toString(false); }
/// @returns the canonical name of this type for use in library function signatures.
virtual std::string canonicalName() const { return toString(true); }
virtual std::string humanReadableName() const { return toString(); }
/// @returns the signature of this type in external functions, i.e. `uint256` for integers
/// or `(uint256,bytes8)[2]` for an array of structs. If @a _structsByName,
/// structs are given by canonical name like `ContractName.StructName[2]`.
virtual std::string signatureInExternalFunction(bool /*_structsByName*/) const
{
return canonicalName();
}
virtual u256 literalValue(Literal const*) const
{
solAssert(false, "Literal value requested for type without literals: " + toString(false));
}
/// @returns a (simpler) type that is encoded in the same way for external function calls.
/// This for example returns address for contract types.
/// If there is no such type, returns an empty shared pointer.
virtual Type const* encodingType() const { return nullptr; }
/// @returns the encoding type used under the given circumstances for the type of an expression
/// when used for e.g. abi.encode(...) or the empty pointer if the object
/// cannot be encoded.
/// This is different from encodingType since it takes implicit conversions into account.
Type const* fullEncodingType(bool _inLibraryCall, bool _encoderV2, bool _packed) const;
/// @returns a (simpler) type that is used when decoding this type in calldata.
virtual Type const* decodingType() const { return encodingType(); }
/// @returns a type that will be used outside of Solidity for e.g. function signatures.
/// This for example returns address for contract types.
/// If there is no such type, returns an empty shared pointer.
/// @param _inLibrary if set, returns types as used in a library, e.g. struct and contract types
/// are returned without modification.
virtual TypeResult interfaceType(bool /*_inLibrary*/) const { return nullptr; }
/// @returns the declaration of a user defined type (enum, struct, user defined value type).
/// Returns nullptr otherwise.
virtual Declaration const* typeDefinition() const { return nullptr; }
/// Clears all internally cached values (if any).
virtual void clearCache() const;
/// Scans all "using for" directives in the @a _scope for functions implementing
/// the operator represented by @a _token. Returns the set of all definitions where the type
/// of the first argument matches this type object.
///
/// @note: If the AST has passed analysis without errors,
/// the function will find at most one definition for an operator.
///
/// @param _unary If true, only definitions that accept exactly one argument are included.
/// Otherwise only definitions that accept exactly two arguments.
std::set<FunctionDefinition const*, ASTCompareByID<ASTNode>> operatorDefinitions(
Token _token,
ASTNode const& _scope,
bool _unary
) const;
private:
/// @returns a member list containing all members added to this type by `using for` directives.
static MemberList::MemberMap attachedFunctions(Type const& _type, ASTNode const& _scope);
protected:
/// @returns the members native to this type depending on the given context. This function
/// is used (in conjunction with attachedFunctions to fill m_members below.
virtual MemberList::MemberMap nativeMembers(ASTNode const* /*_currentScope*/) const
{
return MemberList::MemberMap();
}
/// Generates the stack items to be returned by ``stackItems()``. Defaults
/// to exactly one unnamed and untyped stack item referring to a single stack slot.
virtual std::vector<std::tuple<std::string, Type const*>> makeStackItems() const
{
return {std::make_tuple(std::string(), nullptr)};
}
/// List of member types (parameterised by scape), will be lazy-initialized.
mutable std::map<ASTNode const*, std::unique_ptr<MemberList>> m_members;
mutable std::optional<std::vector<std::tuple<std::string, Type const*>>> m_stackItems;
mutable std::optional<size_t> m_stackSize;
};
/**
* Type for addresses.
*/
class AddressType: public Type
{
public:
explicit AddressType(StateMutability _stateMutability);
Category category() const override { return Category::Address; }
std::string richIdentifier() const override;
BoolResult isImplicitlyConvertibleTo(Type const& _other) const override;
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
TypeResult unaryOperatorResult(Token _operator) const override;
TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override;
bool operator==(Type const& _other) const override;
unsigned calldataEncodedSize(bool _padded = true) const override { return _padded ? 32 : 160 / 8; }
unsigned storageBytes() const override { return 160 / 8; }
bool leftAligned() const override { return false; }
bool isValueType() const override { return true; }
bool nameable() const override { return true; }
MemberList::MemberMap nativeMembers(ASTNode const*) const override;
std::string toString(bool _withoutDataLocation) const override;
std::string canonicalName() const override;
u256 literalValue(Literal const* _literal) const override;
Type const* encodingType() const override { return this; }
TypeResult interfaceType(bool) const override { return this; }
StateMutability stateMutability(void) const { return m_stateMutability; }
private:
StateMutability m_stateMutability;
};
/**
* Any kind of integer type (signed, unsigned).
*/
class IntegerType: public Type
{
public:
enum class Modifier
{
Unsigned, Signed
};
explicit IntegerType(unsigned _bits, Modifier _modifier = Modifier::Unsigned);
Category category() const override { return Category::Integer; }
std::string richIdentifier() const override;
BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override;
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
TypeResult unaryOperatorResult(Token _operator) const override;
TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override;
bool operator==(IntegerType const& _other) const;
bool operator==(Type const& _other) const override;
unsigned calldataEncodedSize(bool _padded = true) const override { return _padded ? 32 : m_bits / 8; }
unsigned storageBytes() const override { return m_bits / 8; }
bool leftAligned() const override { return false; }
bool isValueType() const override { return true; }
bool nameable() const override { return true; }
std::string toString(bool _withoutDataLocation) const override;
Type const* encodingType() const override { return this; }
TypeResult interfaceType(bool) const override { return this; }
unsigned numBits() const { return m_bits; }
bool isSigned() const { return m_modifier == Modifier::Signed; }
u256 min() const;
u256 max() const;
bigint minValue() const;
bigint maxValue() const;
private:
unsigned const m_bits;
Modifier const m_modifier;
};
/**
* A fixed point type number (signed, unsigned).
*/
class FixedPointType: public Type
{
public:
enum class Modifier
{
Unsigned, Signed
};
explicit FixedPointType(unsigned _totalBits, unsigned _fractionalDigits, Modifier _modifier = Modifier::Unsigned);
Category category() const override { return Category::FixedPoint; }
std::string richIdentifier() const override;
BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override;
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
TypeResult unaryOperatorResult(Token _operator) const override;
TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override;
bool operator==(Type const& _other) const override;
unsigned calldataEncodedSize(bool _padded = true) const override { return _padded ? 32 : m_totalBits / 8; }
unsigned storageBytes() const override { return m_totalBits / 8; }
bool leftAligned() const override { return false; }
bool isValueType() const override { return true; }
bool nameable() const override { return true; }
std::string toString(bool _withoutDataLocation) const override;
Type const* encodingType() const override { return this; }
TypeResult interfaceType(bool) const override { return this; }
/// Number of bits used for this type in total.
unsigned numBits() const { return m_totalBits; }
/// Number of decimal digits after the radix point.
unsigned fractionalDigits() const { return m_fractionalDigits; }
bool isSigned() const { return m_modifier == Modifier::Signed; }
/// @returns the largest integer value this type con hold. Note that this is not the
/// largest value in general.
bigint maxIntegerValue() const;
/// @returns the smallest integer value this type can hold. Note hat this is not the
/// smallest value in general.
bigint minIntegerValue() const;
/// @returns the smallest integer type that can hold this type with fractional parts shifted to integers.
IntegerType const* asIntegerType() const;
private:
unsigned m_totalBits;
unsigned m_fractionalDigits;
Modifier m_modifier;
};
/**
* Integer and fixed point constants either literals or computed.
* Example expressions: 2, 3.14, 2+10.2, ~10.
* There is one distinct type per value.
*/
class RationalNumberType: public Type
{
public:
explicit RationalNumberType(rational _value, Type const* _compatibleBytesType = nullptr):
m_value(std::move(_value)), m_compatibleBytesType(_compatibleBytesType)
{}
Category category() const override { return Category::RationalNumber; }
BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override;
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
TypeResult unaryOperatorResult(Token _operator) const override;
TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override;
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
bool canBeStored() const override { return false; }
std::string toString(bool _withoutDataLocation) const override;
u256 literalValue(Literal const* _literal) const override;
Type const* mobileType() const override;
/// @returns the underlying raw literal value.
///
/// @see literalValue(Literal const*))
rational const& value() const noexcept { return m_value; }
/// @returns the smallest integer type that can hold the value or an empty pointer if not possible.
IntegerType const* integerType() const;
/// @returns the smallest fixed type that can hold the value or incurs the least precision loss,
/// unless the value was truncated, then a suitable type will be chosen to indicate such event.
/// If the integer part does not fit, returns an empty pointer.
FixedPointType const* fixedPointType() const;
/// @returns true if the value is not an integer.
bool isFractional() const { return m_value.denominator() != 1; }
/// @returns true if the value is negative.
bool isNegative() const { return m_value < 0; }
/// @returns true if the value is zero.
bool isZero() const { return m_value == 0; }
/// @returns true if the literal is a valid integer.
static std::tuple<bool, rational> isValidLiteral(Literal const& _literal);
private:
rational m_value;
/// Bytes type to which the rational can be implicitly converted.
/// Empty for all rationals that are not directly parsed from hex literals.
Type const* m_compatibleBytesType;
/// @returns true if the literal is a valid rational number.
static std::tuple<bool, rational> parseRational(std::string const& _value);
/// @returns a truncated readable representation of the bigint keeping only
/// up to 4 leading and 4 trailing digits.
static std::string bigintToReadableString(bigint const& num);
};
/**
* Literal string, can be converted to bytes, bytesX or string.
*/
class StringLiteralType: public Type
{
public:
explicit StringLiteralType(Literal const& _literal);
explicit StringLiteralType(std::string _value);
Category category() const override { return Category::StringLiteral; }
BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override;
TypeResult binaryOperatorResult(Token, Type const*) const override
{
return nullptr;
}
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
bool canBeStored() const override { return false; }
std::string toString(bool) const override;
Type const* mobileType() const override;
std::string const& value() const { return m_value; }
protected:
std::vector<std::tuple<std::string, Type const*>> makeStackItems() const override { return {}; }
private:
std::string m_value;
};
/**
* Bytes type with fixed length of up to 32 bytes.
*/
class FixedBytesType: public Type
{
public:
explicit FixedBytesType(unsigned _bytes);
Category category() const override { return Category::FixedBytes; }
BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override;
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
TypeResult unaryOperatorResult(Token _operator) const override;
TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override;
unsigned calldataEncodedSize(bool _padded) const override { return _padded && m_bytes > 0 ? 32 : m_bytes; }
unsigned storageBytes() const override { return m_bytes; }
bool leftAligned() const override { return true; }
bool isValueType() const override { return true; }
bool nameable() const override { return true; }
std::string toString(bool) const override { return "bytes" + util::toString(m_bytes); }
MemberList::MemberMap nativeMembers(ASTNode const*) const override;
Type const* encodingType() const override { return this; }
TypeResult interfaceType(bool) const override { return this; }
unsigned numBytes() const { return m_bytes; }
private:
unsigned m_bytes;
};
/**
* The boolean type.
*/
class BoolType: public Type
{
public:
Category category() const override { return Category::Bool; }
std::string richIdentifier() const override { return "t_bool"; }
TypeResult unaryOperatorResult(Token _operator) const override;
TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override;
unsigned calldataEncodedSize(bool _padded) const override{ return _padded ? 32 : 1; }
unsigned storageBytes() const override { return 1; }
bool leftAligned() const override { return false; }
bool isValueType() const override { return true; }
bool nameable() const override { return true; }
std::string toString(bool) const override { return "bool"; }
u256 literalValue(Literal const* _literal) const override;
Type const* encodingType() const override { return this; }
TypeResult interfaceType(bool) const override { return this; }
};
/**
* Base class for types which can be thought of as several elements of other types put together.
* For example a struct is composed of its members, an array is composed of multiple copies of its
* base element and a mapping is composed of its value type elements (note that keys are not
* stored anywhere).
*/
class CompositeType: public Type
{
protected:
CompositeType() = default;
public:
/// @returns a list containing the type itself, elements of its decomposition,
/// elements of decomposition of these elements and so on, up to non-composite types.
/// Each type is included only once.
std::vector<Type const*> fullDecomposition() const;
protected:
/// @returns a list of types that together make up the data part of this type.
/// Contains all types that will have to be implicitly stored, whenever an object of this type is stored.
/// In particular, it returns the base type for arrays and array slices, the member types for structs,
/// the component types for tuples and the value type for mappings
/// (note that the key type of a mapping is *not* part of the list).
virtual std::vector<Type const*> decomposition() const = 0;
};
/**
* Base class used by types which are not value types and can be stored either in storage, memory
* or calldata. This is currently used by arrays and structs.
*/
class ReferenceType: public CompositeType
{
protected:
explicit ReferenceType(DataLocation _location): m_location(_location) {}
public:
DataLocation location() const { return m_location; }
TypeResult unaryOperatorResult(Token _operator) const override;
TypeResult binaryOperatorResult(Token, Type const*) const override
{
return nullptr;
}
unsigned memoryHeadSize() const override { return 32; }
u256 memoryDataSize() const override = 0;
unsigned calldataEncodedSize(bool) const override = 0;
unsigned calldataEncodedTailSize() const override = 0;
/// @returns a copy of this type with location (recursively) changed to @a _location,
/// whereas isPointer is only shallowly changed - the deep copy is always a bound reference.
virtual std::unique_ptr<ReferenceType> copyForLocation(DataLocation _location, bool _isPointer) const = 0;
Type const* mobileType() const override { return withLocation(m_location, true); }
bool dataStoredIn(DataLocation _location) const override { return m_location == _location; }
bool hasSimpleZeroValueInMemory() const override { return false; }
/// Storage references can be pointers or bound references. In general, local variables are of
/// pointer type, state variables are bound references. Assignments to pointers or deleting
/// them will not modify storage (that will only change the pointer). Assignment from
/// non-storage objects to a variable of storage pointer type is not possible.
/// For anything other than storage, this always returns true because assignments
/// never change the contents of the original value.
bool isPointer() const;
/// @returns true if this is valid to be stored in data location _loc
/// The function mostly checks sizes. For calldata, this should only be called
/// if the type has an interfaceType.
virtual BoolResult validForLocation(DataLocation _loc) const = 0;
bool equals(ReferenceType const& _other) const
{
return location() == _other.location() && isPointer() == _other.isPointer();
}
Type const* withLocation(DataLocation _location, bool _isPointer) const;
protected:
Type const* copyForLocationIfReference(Type const* _type) const;
/// @returns a human-readable description of the reference part of the type.
std::string stringForReferencePart() const;
/// @returns the suffix computed from the reference part to be used by identifier();
std::string identifierLocationSuffix() const;
DataLocation m_location = DataLocation::Storage;
bool m_isPointer = true;
};
/**
* The type of an array. The flavours are byte array (bytes), statically- (<type>[<length>])
* and dynamically-sized array (<type>[]).
* In storage, all arrays are packed tightly (as long as more than one elementary type fits in
* one slot). Dynamically sized arrays (including byte arrays) start with their size as a uint and
* thus start on their own slot.
*/
class ArrayType: public ReferenceType
{
public:
/// Constructor for a byte array ("bytes") and string.
explicit ArrayType(DataLocation _location, bool _isString = false);
/// Constructor for a dynamically sized array type ("<type>[]")
ArrayType(DataLocation _location, Type const* _baseType):
ReferenceType(_location),
m_baseType(copyForLocationIfReference(_baseType))
{
}
/// Constructor for a fixed-size array type ("<type>[<length>]")
ArrayType(DataLocation _location, Type const* _baseType, u256 _length):
ReferenceType(_location),
m_baseType(copyForLocationIfReference(_baseType)),
m_hasDynamicLength(false),
m_length(std::move(_length))
{}
Category category() const override { return Category::Array; }
BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override;
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
std::string richIdentifier() const override;
bool operator==(ArrayType const& _other) const;
bool operator==(Type const& _other) const override;
unsigned calldataEncodedSize(bool) const override;
unsigned calldataEncodedTailSize() const override;
bool isDynamicallySized() const override { return m_hasDynamicLength; }
bool isDynamicallyEncoded() const override;
bigint storageSizeUpperBound() const override;
u256 storageSize() const override;
bool containsNestedMapping() const override { return m_baseType->containsNestedMapping(); }
bool nameable() const override { return true; }
std::string toString(bool _withoutDataLocation) const override;
std::string humanReadableName() const override;
std::string canonicalName() const override;
std::string signatureInExternalFunction(bool _structsByName) const override;
MemberList::MemberMap nativeMembers(ASTNode const* _currentScope) const override;
Type const* encodingType() const override;
Type const* decodingType() const override;
TypeResult interfaceType(bool _inLibrary) const override;
BoolResult validForLocation(DataLocation _loc) const override;
/// @returns true if this is a byte array.
bool isByteArray() const { return m_arrayKind == ArrayKind::Bytes; }
/// @returns true if this is a byte array or a string
bool isByteArrayOrString() const { return m_arrayKind != ArrayKind::Ordinary; }
/// @returns true if this is a string
bool isString() const { return m_arrayKind == ArrayKind::String; }
Type const* baseType() const { solAssert(!!m_baseType, ""); return m_baseType; }
Type const* finalBaseType(bool breakIfDynamicArrayType) const;
u256 const& length() const { return m_length; }
u256 memoryDataSize() const override;
std::unique_ptr<ReferenceType> copyForLocation(DataLocation _location, bool _isPointer) const override;
/// The offset to advance in calldata to move from one array element to the next.
unsigned calldataStride() const { return isByteArrayOrString() ? 1 : m_baseType->calldataHeadSize(); }
/// The offset to advance in memory to move from one array element to the next.
unsigned memoryStride() const { return isByteArrayOrString() ? 1 : m_baseType->memoryHeadSize(); }
/// The offset to advance in storage to move from one array element to the next.
unsigned storageStride() const { return isByteArrayOrString() ? 1 : m_baseType->storageBytes(); }
void clearCache() const override;
protected:
std::vector<std::tuple<std::string, Type const*>> makeStackItems() const override;
std::vector<Type const*> decomposition() const override { return {m_baseType}; }
private:
enum class ArrayKind { Ordinary, Bytes, String };
bigint unlimitedStaticCalldataSize(bool _padded) const;
///< Byte arrays ("bytes") and strings have different semantics from ordinary arrays.
ArrayKind m_arrayKind = ArrayKind::Ordinary;
Type const* m_baseType;
bool m_hasDynamicLength = true;
u256 m_length;
mutable std::optional<TypeResult> m_interfaceType;
mutable std::optional<TypeResult> m_interfaceType_library;
};
class ArraySliceType: public ReferenceType
{
public:
explicit ArraySliceType(ArrayType const& _arrayType): ReferenceType(_arrayType.location()), m_arrayType(_arrayType) {}
Category category() const override { return Category::ArraySlice; }
BoolResult isImplicitlyConvertibleTo(Type const& _other) const override;
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
unsigned calldataEncodedSize(bool) const override { solAssert(false, ""); }
unsigned calldataEncodedTailSize() const override { return 32; }
bool isDynamicallySized() const override { return true; }
bool isDynamicallyEncoded() const override { return true; }
std::string toString(bool _withoutDataLocation) const override;
std::string humanReadableName() const override;
Type const* mobileType() const override;
BoolResult validForLocation(DataLocation _loc) const override { return m_arrayType.validForLocation(_loc); }
ArrayType const& arrayType() const { return m_arrayType; }
u256 memoryDataSize() const override { solAssert(false, ""); }
std::unique_ptr<ReferenceType> copyForLocation(DataLocation, bool) const override { solAssert(false, ""); }
protected:
std::vector<std::tuple<std::string, Type const*>> makeStackItems() const override;
std::vector<Type const*> decomposition() const override { return {m_arrayType.baseType()}; }
private:
ArrayType const& m_arrayType;
};
/**
* The type of a contract instance or library, there is one distinct type for each contract definition.
*/
class ContractType: public Type
{
public:
explicit ContractType(ContractDefinition const& _contract, bool _super = false):
m_contract(_contract), m_super(_super) {}
Category category() const override { return Category::Contract; }
/// Contracts can be implicitly converted only to base contracts.
BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override;
/// Contracts can only be explicitly converted to address types and base contracts.
BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override;
TypeResult unaryOperatorResult(Token _operator) const override;
std::string richIdentifier() const override;
bool operator==(Type const& _other) const override;
unsigned calldataEncodedSize(bool _padded ) const override
{
solAssert(!isSuper(), "");
return encodingType()->calldataEncodedSize(_padded);
}
unsigned storageBytes() const override { solAssert(!isSuper(), ""); return 20; }
bool leftAligned() const override { solAssert(!isSuper(), ""); return false; }
bool isValueType() const override { return !isSuper(); }
bool nameable() const override { return !isSuper(); }
std::string toString(bool _withoutDataLocation) const override;
std::string canonicalName() const override;
MemberList::MemberMap nativeMembers(ASTNode const* _currentScope) const override;
Type const* encodingType() const override;
TypeResult interfaceType(bool _inLibrary) const override
{
if (isSuper())
return nullptr;
return _inLibrary ? this : encodingType();
}
/// See documentation of m_super
bool isSuper() const { return m_super; }
// @returns true if and only if the contract has a receive ether function or a payable fallback function, i.e.
// if it has code that will be executed on plain ether transfers