@@ -7,216 +7,223 @@ pub fn main() {
7
7
}
8
8
9
9
pub fn arithmetic_addition_add_two_positive_rational_numbers_test ( ) {
10
- assert RationalNumber ( 7 , 6 ) =
10
+ let assert RationalNumber ( 7 , 6 ) =
11
11
rational_numbers . add ( RationalNumber ( 1 , 2 ) , RationalNumber ( 2 , 3 ) )
12
12
}
13
13
14
14
pub fn arithmetic_addition_add_a_positive_rational_number_and_a_negative_rational_number_test ( ) {
15
- assert RationalNumber ( - 1, 6 ) =
15
+ let assert RationalNumber ( - 1, 6 ) =
16
16
rational_numbers . add ( RationalNumber ( 1 , 2 ) , RationalNumber ( - 2, 3 ) )
17
17
}
18
18
19
19
pub fn arithmetic_addition_add_two_negative_rational_numbers_test ( ) {
20
- assert RationalNumber ( - 7, 6 ) =
20
+ let assert RationalNumber ( - 7, 6 ) =
21
21
rational_numbers . add ( RationalNumber ( - 1, 2 ) , RationalNumber ( - 2, 3 ) )
22
22
}
23
23
24
24
pub fn arithmetic_addition_add_a_rational_number_to_its_additive_inverse_test ( ) {
25
- assert RationalNumber ( 0 , 1 ) =
25
+ let assert RationalNumber ( 0 , 1 ) =
26
26
rational_numbers . add ( RationalNumber ( 1 , 2 ) , RationalNumber ( - 1, 2 ) )
27
27
}
28
28
29
29
pub fn arithmetic_subtraction_subtract_two_positive_rational_numbers_test ( ) {
30
- assert RationalNumber ( - 1, 6 ) =
30
+ let assert RationalNumber ( - 1, 6 ) =
31
31
rational_numbers . subtract ( RationalNumber ( 1 , 2 ) , RationalNumber ( 2 , 3 ) )
32
32
}
33
33
34
34
pub fn arithmetic_subtraction_subtract_a_positive_rational_number_and_a_negative_rational_number_test ( ) {
35
- assert RationalNumber ( 7 , 6 ) =
35
+ let assert RationalNumber ( 7 , 6 ) =
36
36
rational_numbers . subtract ( RationalNumber ( 1 , 2 ) , RationalNumber ( - 2, 3 ) )
37
37
}
38
38
39
39
pub fn arithmetic_subtraction_subtract_two_negative_rational_numbers_test ( ) {
40
- assert RationalNumber ( 1 , 6 ) =
40
+ let assert RationalNumber ( 1 , 6 ) =
41
41
rational_numbers . subtract ( RationalNumber ( - 1, 2 ) , RationalNumber ( - 2, 3 ) )
42
42
}
43
43
44
44
pub fn arithmetic_subtraction_subtract_a_rational_number_from_itself_test ( ) {
45
- assert RationalNumber ( 0 , 1 ) =
45
+ let assert RationalNumber ( 0 , 1 ) =
46
46
rational_numbers . subtract ( RationalNumber ( 1 , 2 ) , RationalNumber ( 1 , 2 ) )
47
47
}
48
48
49
49
pub fn arithmetic_multiplication_multiply_two_positive_rational_numbers_test ( ) {
50
- assert RationalNumber ( 1 , 3 ) =
50
+ let assert RationalNumber ( 1 , 3 ) =
51
51
rational_numbers . multiply ( RationalNumber ( 1 , 2 ) , RationalNumber ( 2 , 3 ) )
52
52
}
53
53
54
54
pub fn arithmetic_multiplication_multiply_a_negative_rational_number_by_a_positive_rational_number_test ( ) {
55
- assert RationalNumber ( - 1, 3 ) =
55
+ let assert RationalNumber ( - 1, 3 ) =
56
56
rational_numbers . multiply ( RationalNumber ( - 1, 2 ) , RationalNumber ( 2 , 3 ) )
57
57
}
58
58
59
59
pub fn arithmetic_multiplication_multiply_two_negative_rational_numbers_test ( ) {
60
- assert RationalNumber ( 1 , 3 ) =
60
+ let assert RationalNumber ( 1 , 3 ) =
61
61
rational_numbers . multiply ( RationalNumber ( - 1, 2 ) , RationalNumber ( - 2, 3 ) )
62
62
}
63
63
64
64
pub fn arithmetic_multiplication_multiply_a_rational_number_by_its_reciprocal_test ( ) {
65
- assert RationalNumber ( 1 , 1 ) =
65
+ let assert RationalNumber ( 1 , 1 ) =
66
66
rational_numbers . multiply ( RationalNumber ( 1 , 2 ) , RationalNumber ( 2 , 1 ) )
67
67
}
68
68
69
69
pub fn arithmetic_multiplication_multiply_a_rational_number_by_1_test ( ) {
70
- assert RationalNumber ( 1 , 2 ) =
70
+ let assert RationalNumber ( 1 , 2 ) =
71
71
rational_numbers . multiply ( RationalNumber ( 1 , 2 ) , RationalNumber ( 1 , 1 ) )
72
72
}
73
73
74
74
pub fn arithmetic_multiplication_multiply_a_rational_number_by_0_test ( ) {
75
- assert RationalNumber ( 0 , 1 ) =
75
+ let assert RationalNumber ( 0 , 1 ) =
76
76
rational_numbers . multiply ( RationalNumber ( 1 , 2 ) , RationalNumber ( 0 , 1 ) )
77
77
}
78
78
79
79
pub fn arithmetic_division_divide_two_positive_rational_numbers_test ( ) {
80
- assert RationalNumber ( 3 , 4 ) =
80
+ let assert RationalNumber ( 3 , 4 ) =
81
81
rational_numbers . divide ( RationalNumber ( 1 , 2 ) , RationalNumber ( 2 , 3 ) )
82
82
}
83
83
84
84
pub fn arithmetic_division_divide_a_positive_rational_number_by_a_negative_rational_number_test ( ) {
85
- assert RationalNumber ( - 3, 4 ) =
85
+ let assert RationalNumber ( - 3, 4 ) =
86
86
rational_numbers . divide ( RationalNumber ( 1 , 2 ) , RationalNumber ( - 2, 3 ) )
87
87
}
88
88
89
89
pub fn arithmetic_division_divide_two_negative_rational_numbers_test ( ) {
90
- assert RationalNumber ( 3 , 4 ) =
90
+ let assert RationalNumber ( 3 , 4 ) =
91
91
rational_numbers . divide ( RationalNumber ( - 1, 2 ) , RationalNumber ( - 2, 3 ) )
92
92
}
93
93
94
94
pub fn arithmetic_division_divide_a_rational_number_by_1_test ( ) {
95
- assert RationalNumber ( 1 , 2 ) =
95
+ let assert RationalNumber ( 1 , 2 ) =
96
96
rational_numbers . divide ( RationalNumber ( 1 , 2 ) , RationalNumber ( 1 , 1 ) )
97
97
}
98
98
99
99
pub fn absolute_value_absolute_value_of_a_positive_rational_number_test ( ) {
100
- assert RationalNumber ( 1 , 2 ) =
100
+ let assert RationalNumber ( 1 , 2 ) =
101
101
rational_numbers . absolute_value ( RationalNumber ( 1 , 2 ) )
102
102
}
103
103
104
104
pub fn absolute_value_absolute_value_of_a_positive_rational_number_with_negative_numerator_and_denominator_test ( ) {
105
- assert RationalNumber ( 1 , 2 ) =
105
+ let assert RationalNumber ( 1 , 2 ) =
106
106
rational_numbers . absolute_value ( RationalNumber ( - 1, - 2) )
107
107
}
108
108
109
109
pub fn absolute_value_absolute_value_of_a_negative_rational_number_test ( ) {
110
- assert RationalNumber ( 1 , 2 ) =
110
+ let assert RationalNumber ( 1 , 2 ) =
111
111
rational_numbers . absolute_value ( RationalNumber ( - 1, 2 ) )
112
112
}
113
113
114
114
pub fn absolute_value_absolute_value_of_a_negative_rational_number_with_negative_denominator_test ( ) {
115
- assert RationalNumber ( 1 , 2 ) =
115
+ let assert RationalNumber ( 1 , 2 ) =
116
116
rational_numbers . absolute_value ( RationalNumber ( 1 , - 2) )
117
117
}
118
118
119
119
pub fn absolute_value_absolute_value_of_zero_test ( ) {
120
- assert RationalNumber ( 0 , 1 ) =
120
+ let assert RationalNumber ( 0 , 1 ) =
121
121
rational_numbers . absolute_value ( RationalNumber ( 0 , 1 ) )
122
122
}
123
123
124
124
pub fn absolute_value_absolute_value_of_a_rational_number_is_reduced_to_lowest_terms_test ( ) {
125
- assert RationalNumber ( 1 , 2 ) =
125
+ let assert RationalNumber ( 1 , 2 ) =
126
126
rational_numbers . absolute_value ( RationalNumber ( 2 , 4 ) )
127
127
}
128
128
129
129
pub fn exponentiation_of_a_rational_number_raise_a_positive_rational_number_to_a_positive_integer_power_test ( ) {
130
- assert Ok ( RationalNumber ( 1 , 8 ) ) =
130
+ let assert RationalNumber ( 1 , 8 ) =
131
131
rational_numbers . power_of_rational ( number : RationalNumber ( 1 , 2 ) , to : 3 )
132
132
}
133
133
134
134
pub fn exponentiation_of_a_rational_number_raise_a_negative_rational_number_to_a_positive_integer_power_test ( ) {
135
- assert Ok ( RationalNumber ( - 1, 8 ) ) =
135
+ let assert RationalNumber ( - 1, 8 ) =
136
136
rational_numbers . power_of_rational ( number : RationalNumber ( - 1, 2 ) , to : 3 )
137
137
}
138
138
139
139
pub fn exponentiation_of_a_rational_number_raise_a_positive_rational_number_to_a_negative_integer_power_test ( ) {
140
- assert Ok ( RationalNumber ( 25 , 9 ) ) =
140
+ let assert RationalNumber ( 25 , 9 ) =
141
141
rational_numbers . power_of_rational ( number : RationalNumber ( 3 , 5 ) , to : - 2)
142
142
}
143
143
144
144
pub fn exponentiation_of_a_rational_number_raise_a_negative_rational_number_to_an_even_negative_integer_power_test ( ) {
145
- assert Ok ( RationalNumber ( 25 , 9 ) ) =
145
+ let assert RationalNumber ( 25 , 9 ) =
146
146
rational_numbers . power_of_rational ( number : RationalNumber ( - 3, 5 ) , to : - 2)
147
147
}
148
148
149
149
pub fn exponentiation_of_a_rational_number_raise_a_negative_rational_number_to_an_odd_negative_integer_power_test ( ) {
150
- assert Ok ( RationalNumber ( - 125, 27 ) ) =
150
+ let assert RationalNumber ( - 125, 27 ) =
151
151
rational_numbers . power_of_rational ( number : RationalNumber ( - 3, 5 ) , to : - 3)
152
152
}
153
153
154
154
pub fn exponentiation_of_a_rational_number_raise_zero_to_an_integer_power_test ( ) {
155
- assert Ok ( RationalNumber ( 0 , 1 ) ) =
155
+ let assert RationalNumber ( 0 , 1 ) =
156
156
rational_numbers . power_of_rational ( number : RationalNumber ( 0 , 1 ) , to : 5 )
157
157
}
158
158
159
159
pub fn exponentiation_of_a_rational_number_raise_one_to_an_integer_power_test ( ) {
160
- assert Ok ( RationalNumber ( 1 , 1 ) ) =
160
+ let assert RationalNumber ( 1 , 1 ) =
161
161
rational_numbers . power_of_rational ( number : RationalNumber ( 1 , 1 ) , to : 4 )
162
162
}
163
163
164
164
pub fn exponentiation_of_a_rational_number_raise_a_positive_rational_number_to_the_power_of_zero_test ( ) {
165
- assert Ok ( RationalNumber ( 1 , 1 ) ) =
165
+ let assert RationalNumber ( 1 , 1 ) =
166
166
rational_numbers . power_of_rational ( number : RationalNumber ( 1 , 2 ) , to : 0 )
167
167
}
168
168
169
169
pub fn exponentiation_of_a_rational_number_raise_a_negative_rational_number_to_the_power_of_zero_test ( ) {
170
- assert Ok ( RationalNumber ( 1 , 1 ) ) =
170
+ let assert RationalNumber ( 1 , 1 ) =
171
171
rational_numbers . power_of_rational ( number : RationalNumber ( - 1, 2 ) , to : 0 )
172
172
}
173
173
174
174
pub fn exponentiation_of_a_real_number_to_a_rational_number_raise_a_real_number_to_a_positive_rational_number_test ( ) {
175
- assert Ok ( power ) =
175
+ let assert Ok ( power ) =
176
176
rational_numbers . power_of_real ( number : 8.0 , to : RationalNumber ( 4 , 3 ) )
177
177
178
- assert True = float . loosely_equals ( power , with : 16.0 , tolerating : 0.001 )
178
+ let assert True = float . loosely_equals ( power , with : 16.0 , tolerating : 0.001 )
179
179
}
180
180
181
181
pub fn exponentiation_of_a_real_number_to_a_rational_number_raise_a_real_number_to_a_negative_rational_number_test ( ) {
182
- assert Ok ( power ) =
182
+ let assert Ok ( power ) =
183
183
rational_numbers . power_of_real ( number : 9.0 , to : RationalNumber ( - 1, 2 ) )
184
184
185
- assert True =
185
+ let assert True =
186
186
float . loosely_equals ( power , with : 0.3333333333333333 , tolerating : 0.001 )
187
187
}
188
188
189
189
pub fn exponentiation_of_a_real_number_to_a_rational_number_raise_a_real_number_to_a_zero_rational_number_test ( ) {
190
- assert Ok ( power ) =
190
+ let assert Ok ( power ) =
191
191
rational_numbers . power_of_real ( number : 2.0 , to : RationalNumber ( 0 , 1 ) )
192
192
193
- assert True = float . loosely_equals ( power , with : 1.0 , tolerating : 0.001 )
193
+ let assert True = float . loosely_equals ( power , with : 1.0 , tolerating : 0.001 )
194
194
}
195
195
196
196
pub fn reduction_to_lowest_terms_reduce_a_positive_rational_number_to_lowest_terms_test ( ) {
197
- assert RationalNumber ( 1 , 2 ) = rational_numbers . reduce ( RationalNumber ( 2 , 4 ) )
197
+ let assert RationalNumber ( 1 , 2 ) =
198
+ rational_numbers . reduce ( RationalNumber ( 2 , 4 ) )
198
199
}
199
200
200
201
pub fn reduction_to_lowest_terms_reduce_places_the_minus_sign_on_the_numerator_test ( ) {
201
- assert RationalNumber ( - 3, 4 ) = rational_numbers . reduce ( RationalNumber ( 3 , - 4) )
202
+ let assert RationalNumber ( - 3, 4 ) =
203
+ rational_numbers . reduce ( RationalNumber ( 3 , - 4) )
202
204
}
203
205
204
206
pub fn reduction_to_lowest_terms_reduce_a_negative_rational_number_to_lowest_terms_test ( ) {
205
- assert RationalNumber ( - 2, 3 ) = rational_numbers . reduce ( RationalNumber ( - 4, 6 ) )
207
+ let assert RationalNumber ( - 2, 3 ) =
208
+ rational_numbers . reduce ( RationalNumber ( - 4, 6 ) )
206
209
}
207
210
208
211
pub fn reduction_to_lowest_terms_reduce_a_rational_number_with_a_negative_denominator_to_lowest_terms_test ( ) {
209
- assert RationalNumber ( - 1, 3 ) = rational_numbers . reduce ( RationalNumber ( 3 , - 9) )
212
+ let assert RationalNumber ( - 1, 3 ) =
213
+ rational_numbers . reduce ( RationalNumber ( 3 , - 9) )
210
214
}
211
215
212
216
pub fn reduction_to_lowest_terms_reduce_zero_to_lowest_terms_test ( ) {
213
- assert RationalNumber ( 0 , 1 ) = rational_numbers . reduce ( RationalNumber ( 0 , 6 ) )
217
+ let assert RationalNumber ( 0 , 1 ) =
218
+ rational_numbers . reduce ( RationalNumber ( 0 , 6 ) )
214
219
}
215
220
216
221
pub fn reduction_to_lowest_terms_reduce_an_integer_to_lowest_terms_test ( ) {
217
- assert RationalNumber ( - 2, 1 ) = rational_numbers . reduce ( RationalNumber ( - 14, 7 ) )
222
+ let assert RationalNumber ( - 2, 1 ) =
223
+ rational_numbers . reduce ( RationalNumber ( - 14, 7 ) )
218
224
}
219
225
220
226
pub fn reduction_to_lowest_terms_reduce_one_to_lowest_terms_test ( ) {
221
- assert RationalNumber ( 1 , 1 ) = rational_numbers . reduce ( RationalNumber ( 13 , 13 ) )
227
+ let assert RationalNumber ( 1 , 1 ) =
228
+ rational_numbers . reduce ( RationalNumber ( 13 , 13 ) )
222
229
}
0 commit comments