-
Notifications
You must be signed in to change notification settings - Fork 116
/
Copy pathner_teach.py
78 lines (70 loc) · 3.24 KB
/
ner_teach.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import prodigy
from prodigy.components.loaders import JSONL
from prodigy.models.ner import EntityRecognizer
from prodigy.models.matcher import PatternMatcher
from prodigy.components.preprocess import split_sentences
from prodigy.components.sorters import prefer_uncertain
from prodigy.util import combine_models, split_string
import spacy
from typing import List, Optional
# Recipe decorator with argument annotations: (description, argument type,
# shortcut, type / converter function called on value before it's passed to
# the function). Descriptions are also shown when typing --help.
@prodigy.recipe(
"ner.teach",
dataset=("The dataset to use", "positional", None, str),
spacy_model=("The base model", "positional", None, str),
source=("The source data as a JSONL file", "positional", None, str),
label=("One or more comma-separated labels", "option", "l", split_string),
patterns=("Optional match patterns", "option", "p", str),
exclude=("Names of datasets to exclude", "option", "e", split_string),
unsegmented=("Don't split sentences", "flag", "U", bool),
)
def ner_teach(
dataset: str,
spacy_model: str,
source: str,
label: Optional[List[str]] = None,
patterns: Optional[str] = None,
exclude: Optional[List[str]] = None,
unsegmented: bool = False,
):
"""
Collect the best possible training data for a named entity recognition
model with the model in the loop. Based on your annotations, Prodigy will
decide which questions to ask next.
"""
# Load the stream from a JSONL file and return a generator that yields a
# dictionary for each example in the data.
stream = JSONL(source)
# Load the spaCy model
nlp = spacy.load(spacy_model)
# Initialize Prodigy's entity recognizer model, which uses beam search to
# find all possible analyses and outputs (score, example) tuples
model = EntityRecognizer(nlp, label=label)
if patterns is None:
# No patterns are used, so just use the NER model to suggest examples
# and only use the model's update method as the update callback
predict = model
update = model.update
else:
# Initialize the pattern matcher and load in the JSONL patterns
matcher = PatternMatcher(nlp).from_disk(patterns)
# Combine the NER model and the matcher and interleave their
# suggestions and update both at the same time
predict, update = combine_models(model, matcher)
if not unsegmented:
# Use spaCy to split text into sentences
stream = split_sentences(nlp, stream)
# Use the prefer_uncertain sorter to focus on suggestions that the model
# is most uncertain about (i.e. with a score closest to 0.5). The model
# yields (score, example) tuples and the sorter yields just the example
stream = prefer_uncertain(predict(stream))
return {
"view_id": "ner", # Annotation interface to use
"dataset": dataset, # Name of dataset to save annotations
"stream": stream, # Incoming stream of examples
"update": update, # Update callback, called with batch of answers
"exclude": exclude, # List of dataset names to exclude
"config": {"lang": nlp.lang}, # Additional config settings, mostly for app UI
}