-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_plot_dqn_vs_ddqn.py
339 lines (285 loc) · 15.2 KB
/
torch_plot_dqn_vs_ddqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import matplotlib.pyplot as plt
import json
import os
import numpy as np
# Define the hyperparameters for each model you want to compare
# eps_values = [1.0, 0.999, 0.9] # nominal is 1.0
# lr_values = [0.01, 0.001, 0.0001] # nominal is 0.0001
# eps_dec_values = [0.90, 0.995, 0.999] # nominal is 0.995
# batch_size_values = [64, 128, 256] # nominal is 128
n_episodes = 1500 # Use the same number of episodes for all models
window_size = 50 # The window size for calculating the moving average
rolling_window = 100 # The window size for calculating the rolling avera
# # Set up folder and file naming conventions
# FOLDER_NAME = 'torch_dqn'
# SCORES_FILENAME_TEMPLATE = f'{FOLDER_NAME}/dqn_scores_{{episodes}}_eps_{{eps}}_eps_d_{{eps_d}}_bs_{{bs}}_lr_{{lr}}.json'
#########################################################
# Define the other hyperparameters for the models #######
# Comment the one which is being compared ###############
#########################################################
epsilon = 1.0
epsilon_dec = 0.995
batch_size = 128
lr = 0.0001
#########################################################
##################### DQN vs DDQN #######################
########################################################
# # File paths for DQN and DDQN
# dqn_folder = 'torch_dqn'
# ddqn_folder = 'torch_DDqn'
# dqn_filename = f'{dqn_folder}/dqn_scores_{n_episodes}_eps_{epsilon}_eps_d_{epsilon_dec}_bs_{batch_size}_lr_{lr}.json'
# ddqn_filename = f'{ddqn_folder}/ddqn_scores_{n_episodes}_eps_{epsilon}_eps_d_{epsilon_dec}_bs_{batch_size}_lr_{lr}.json'
# # Prepare to plot DQN vs. DDQN
# plt.figure(figsize=(12, 6))
# # Plot DQN results
# if os.path.isfile(dqn_filename):
# with open(dqn_filename, 'r') as fp:
# dqn_scores = json.load(fp)
# plt.plot(range(1, n_episodes + 1), dqn_scores, label='DQN', marker='o')
# else:
# print(f"DQN file not found: {dqn_filename}")
# # Plot DDQN results
# if os.path.isfile(ddqn_filename):
# with open(ddqn_filename, 'r') as fp:
# ddqn_scores = json.load(fp)
# plt.plot(range(1, n_episodes + 1), ddqn_scores, label='DDQN', marker='o')
# else:
# print(f"DDQN file not found: {ddqn_filename}")
# # Finalize the plot
# plt.xlabel('Episode', fontsize=17)
# plt.ylabel('Reward', fontsize=17)
# plt.title(f'Reward per Episode DQN vs DDQN\n(epsilon={epsilon}, epsilon_decrement={epsilon_dec}, Batch Size={batch_size}, Learning Rate={lr})', fontsize=17)
# plt.legend()
# plt.grid(True)
# # Save and show the plot
# plot_filename = f'plots/dqn_vs_ddqn/reward_per_episode_comparison_DQN_vs_DDQN-{n_episodes}_eps_{epsilon}_eps_d_{epsilon_dec}_bs_{batch_size}_lr_{lr}.png'
# plt.savefig(plot_filename, bbox_inches='tight')
# print(f"Plot saved to: {plot_filename}")
# plt.show()
# ### Average reward plot
# # Prepare to plot average rewards
# plt.figure(figsize=(12, 6))
# # Calculate and plot average rewards for DQN
# if os.path.isfile(dqn_filename):
# avg_dqn_scores = []
# x_ticks = []
# for i in range(0, len(dqn_scores), window_size):
# window_avg = np.mean(dqn_scores[i:i + window_size])
# avg_dqn_scores.append(window_avg)
# x_ticks.append(i + window_size)
# plt.plot(x_ticks, avg_dqn_scores, label='DQN', marker='o')
# # Calculate and plot average rewards for DDQN
# if os.path.isfile(ddqn_filename):
# avg_ddqn_scores = []
# x_ticks = []
# for i in range(0, len(ddqn_scores), window_size):
# window_avg = np.mean(ddqn_scores[i:i + window_size])
# avg_ddqn_scores.append(window_avg)
# x_ticks.append(i + window_size)
# plt.plot(x_ticks, avg_ddqn_scores, label='DDQN', marker='o')
# # Finalize the plot
# plt.xlabel('Episode', fontsize=17)
# plt.ylabel(f'Average Reward (over {window_size} episodes)', fontsize=17)
# plt.title(f'Average Reward per {window_size} Episodes: DQN vs DDQN with \n(epsilon={epsilon}, epsilon_decrement={epsilon_dec}, Batch Size={batch_size}, Learning Rate={lr})', fontsize=17)
# plt.legend()
# plt.grid(True)
# # Save and show the plot
# plot_filename = f'plots/dqn_vs_ddqn/reward_avg_per_{window_size}_episodes_comparison_DQN_vs_DDQN-{n_episodes}_eps_{epsilon}_eps_d_{epsilon_dec}_bs_{batch_size}_lr_{lr}.png'
# plt.savefig(plot_filename, bbox_inches='tight')
# print(f"Plot saved to: {plot_filename}")
# plt.show()
# ##############################
# ### rolling average
# plt.figure(figsize=(12, 6))
# # Calculate and plot rolling average rewards for DQN
# if os.path.isfile(dqn_filename):
# rolling_avg_dqn_scores = np.convolve(dqn_scores, np.ones(rolling_window)/rolling_window, mode='valid')
# plt.plot(range(rolling_window, len(dqn_scores) + 1), rolling_avg_dqn_scores, label=f'DQN (Rolling Avg per {rolling_window} Episodes)', linestyle='--')
# # Calculate and plot rolling average rewards for DDQN
# if os.path.isfile(ddqn_filename):
# rolling_avg_ddqn_scores = np.convolve(ddqn_scores, np.ones(rolling_window)/rolling_window, mode='valid')
# plt.plot(range(rolling_window, len(ddqn_scores) + 1), rolling_avg_ddqn_scores, label=f'DDQN (Rolling Avg per {rolling_window} Episodes)', linestyle='--')
# # Finalize the plot for rolling average rewards
# plt.xlabel('Episode', fontsize=17)
# plt.ylabel(f'Rolling Average Reward (over {rolling_window} episodes)', fontsize=17)
# plt.title(f'Rolling Average Reward per {rolling_window} Episodes: DQN vs DDQN with \n(epsilon={epsilon}, epsilon_decrement={epsilon_dec}, Batch Size={batch_size}, Learning Rate={lr})', fontsize=17)
# plt.legend()
# plt.grid(True)
# # Save and show the rolling average reward plot
# rolling_avg_plot_filename = f'plots/dqn_vs_ddqn/reward_rolling_avg_per_{rolling_window}_episodes_comparison_DQN_vs_DDQN-{n_episodes}_eps_{epsilon}_eps_d_{epsilon_dec}_bs_{batch_size}_lr_{lr}.png'
# plt.savefig(rolling_avg_plot_filename, bbox_inches='tight')
# print(f"Rolling average reward plot saved to: {rolling_avg_plot_filename}")
# plt.show()
###### SINGLE GIGA PLOT
# Define the list of file configurations (as tuples of parameters)
configurations = [
(0.9, 0.995, 128, 0.001),
(0.999, 0.995, 128, 0.001),
(1.0, 0.9, 128, 0.001),
(1.0, 0.995, 64, 0.001),
(1.0, 0.995, 128, 0.01),
(1.0, 0.995, 128, 0.001),
(1.0, 0.995, 128, 0.0001),
(1.0, 0.995, 256, 0.001),
(1.0, 0.999, 128, 0.001)
]
# Prepare to plot DQN vs. DDQN for all configurations
# plt.figure(figsize=(12, 6))
# Loop through each configuration and plot the scores
# for epsilon, epsilon_dec, batch_size, lr in configurations:
# Generate filenames for DQN and DDQN
# dqn_filename = f'{dqn_folder}/dqn_scores_{n_episodes}_eps_{epsilon}_eps_d_{epsilon_dec}_bs_{batch_size}_lr_{lr}.json'
# ddqn_filename = f'{ddqn_folder}/ddqn_scores_{n_episodes}_eps_{epsilon}_eps_d_{epsilon_dec}_bs_{batch_size}_lr_{lr}.json'
# Plot DQN results if the file exists
# if os.path.isfile(dqn_filename):
# with open(dqn_filename, 'r') as fp:
# dqn_scores = json.load(fp)
# plt.plot(range(1, n_episodes + 1), dqn_scores, label=f'DQN eps={epsilon}, eps_d={epsilon_dec}, bs={batch_size}, lr={lr}', linestyle='-')
# Plot DDQN results if the file exists
# if os.path.isfile(ddqn_filename):
# with open(ddqn_filename, 'r') as fp:
# ddqn_scores = json.load(fp)
# plt.plot(range(1, n_episodes + 1), ddqn_scores, label=f'DDQN eps={epsilon}, eps_d={epsilon_dec}, bs={batch_size}, lr={lr}', linestyle='dotted')
# Finalize the plot
# plt.xlabel('Episode')
# plt.ylabel('Reward')
# plt.title('Reward per Episode: DQN vs DDQN (All Configurations)')
# plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
# plt.ylim(-200)
# plt.grid(True)
# Save and show the plot
# plot_filename = 'plots/dqn_vs_ddqn/reward_per_episode_comparison_DQN_vs_DDQN_all_configs.png'
# plt.savefig(plot_filename, bbox_inches='tight') # bbox_inches='tight'
# print(f"Plot saved to: {plot_filename}")
# plt.show()
# Prepare to plot rolling average rewards for all configurations
# plt.figure(figsize=(12, 6))
# Loop through each configuration and plot the rolling averages
# for epsilon, epsilon_dec, batch_size, lr in configurations:
# Generate filenames for DQN and DDQN
# dqn_filename = f'{dqn_folder}/dqn_scores_{n_episodes}_eps_{epsilon}_eps_d_{epsilon_dec}_bs_{batch_size}_lr_{lr}.json'
# ddqn_filename = f'{ddqn_folder}/ddqn_scores_{n_episodes}_eps_{epsilon}_eps_d_{epsilon_dec}_bs_{batch_size}_lr_{lr}.json'
# Calculate and plot rolling average rewards for DQN
# if os.path.isfile(dqn_filename):
# with open(dqn_filename, 'r') as fp:
# dqn_scores = json.load(fp)
# rolling_avg_dqn_scores = np.convolve(dqn_scores, np.ones(rolling_window)/rolling_window, mode='valid')
# plt.plot(range(rolling_window, len(dqn_scores) + 1), rolling_avg_dqn_scores, label=f'DQN eps={epsilon}, eps_d={epsilon_dec}, bs={batch_size}, lr={lr}', linestyle='-')
# Calculate and plot rolling average rewards for DDQN
# if os.path.isfile(ddqn_filename):
# with open(ddqn_filename, 'r') as fp:
# ddqn_scores = json.load(fp)
# rolling_avg_ddqn_scores = np.convolve(ddqn_scores, np.ones(rolling_window)/rolling_window, mode='valid')
# plt.plot(range(rolling_window, len(ddqn_scores) + 1), rolling_avg_ddqn_scores, label=f'DDQN eps={epsilon}, eps_d={epsilon_dec}, bs={batch_size}, lr={lr}', linestyle='dotted')
# Finalize the plot for rolling average rewards
# plt.xlabel('Episode')
# plt.ylabel(f'Rolling Average Reward (over {rolling_window} episodes)')
# plt.title('Rolling Average Reward per Episode: DQN vs DDQN (All Configurations)')
# plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
# plt.ylim(-200)
# plt.grid(True)
# Save and show the rolling average reward plot
# rolling_avg_plot_filename = 'plots/dqn_vs_ddqn/reward_rolling_avg_comparison_DQN_vs_DDQN_all_configs.png'
# plt.savefig(rolling_avg_plot_filename, bbox_inches='tight')
# print(f"Rolling average reward plot saved to: {rolling_avg_plot_filename}")
# plt.show()
# #########################################à
# # ## only ddqn
# # Prepare to plot DDQN for all configurations
# plt.figure(figsize=(12, 6))
# # Loop through each configuration and plot the scores
# for epsilon, epsilon_dec, batch_size, lr in configurations:
# # Generate filenames for DDQN
# ddqn_filename = f'{ddqn_folder}/ddqn_scores_{n_episodes}_eps_{epsilon}_eps_d_{epsilon_dec}_bs_{batch_size}_lr_{lr}.json'
# # Plot DDQN results if the file exists
# if os.path.isfile(ddqn_filename):
# with open(ddqn_filename, 'r') as fp:
# ddqn_scores = json.load(fp)
# plt.plot(range(1, n_episodes + 1), ddqn_scores, label=f'DDQN eps={epsilon}, eps_d={epsilon_dec}, bs={batch_size}, lr={lr}', linestyle='--')
# # Finalize the plot
# plt.xlabel('Episode')
# plt.ylabel('Reward')
# plt.title('Reward per Episode: DDQN (All Configurations)')
# plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
# plt.ylim(-200)
# plt.grid(True)
# # Save and show the plot
# plot_filename = 'plots/dqn_vs_ddqn/reward_per_episode_comparison_DDQN_all_configs.png'
# plt.savefig(plot_filename, bbox_inches='tight') # bbox_inches='tight'
# print(f"Plot saved to: {plot_filename}")
# plt.show()
# # Prepare to plot rolling average rewards for all configurations
# plt.figure(figsize=(12, 6))
# # Loop through each configuration and plot the rolling averages
# for epsilon, epsilon_dec, batch_size, lr in configurations:
# # Generate filenames for DDQN
# ddqn_filename = f'{ddqn_folder}/ddqn_scores_{n_episodes}_eps_{epsilon}_eps_d_{epsilon_dec}_bs_{batch_size}_lr_{lr}.json'
# # Calculate and plot rolling average rewards for DDQN
# if os.path.isfile(ddqn_filename):
# with open(ddqn_filename, 'r') as fp:
# ddqn_scores = json.load(fp)
# rolling_avg_ddqn_scores = np.convolve(ddqn_scores, np.ones(rolling_window)/rolling_window, mode='valid')
# plt.plot(range(rolling_window, len(ddqn_scores) + 1), rolling_avg_ddqn_scores, label=f'DDQN eps={epsilon}, eps_d={epsilon_dec}, bs={batch_size}, lr={lr}', linestyle='--')
# # Finalize the plot for rolling average rewards
# plt.xlabel('Episode', fontsize=17)
# plt.ylabel(f'Rolling Average Reward (over {rolling_window} episodes)', fontsize=17)
# plt.title('Rolling Average Reward per Episode: DDQN (All Configurations)', fontsize=17)
# # plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
# plt.legend()
# plt.ylim(-200)
# plt.grid(True)
# # Save and show the rolling average reward plot
# rolling_avg_plot_filename = 'plots/dqn_vs_ddqn/reward_rolling_avg_comparison__DDQN_all_configs.png'
# plt.savefig(rolling_avg_plot_filename, bbox_inches='tight')
# print(f"Rolling average reward plot saved to: {rolling_avg_plot_filename}")
# plt.show()
##########################################à
# ### only dqn
# # Prepare to plot DQN for all configurations
# plt.figure(figsize=(12, 6))
# # Loop through each configuration and plot the scores
# for epsilon, epsilon_dec, batch_size, lr in configurations:
# # Generate filenames for DQN
# dqn_filename = f'{dqn_folder}/dqn_scores_{n_episodes}_eps_{epsilon}_eps_d_{epsilon_dec}_bs_{batch_size}_lr_{lr}.json'
# # Plot DQN results if the file exists
# if os.path.isfile(dqn_filename):
# with open(dqn_filename, 'r') as fp:
# dqn_scores = json.load(fp)
# plt.plot(range(1, n_episodes + 1), dqn_scores, label=f'DQN eps={epsilon}, eps_d={epsilon_dec}, bs={batch_size}, lr={lr}', linestyle='--')
# # Finalize the plot
# plt.xlabel('Episode')
# plt.ylabel('Reward')
# plt.title('Reward per Episode: DQN (All Configurations)')
# plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
# plt.ylim(-200)
# plt.grid(True)
# # Save and show the plot
# plot_filename = 'plots/dqn_vs_ddqn/reward_per_episode_comparison_DQN_all_configs.png'
# plt.savefig(plot_filename, bbox_inches='tight') # bbox_inches='tight'
# print(f"Plot saved to: {plot_filename}")
# plt.show()
# # Prepare to plot rolling average rewards for all configurations
# plt.figure(figsize=(12, 6))
# # Loop through each configuration and plot the rolling averages
# for epsilon, epsilon_dec, batch_size, lr in configurations:
# # Generate filenames for DQN
# dqn_filename = f'{dqn_folder}/dqn_scores_{n_episodes}_eps_{epsilon}_eps_d_{epsilon_dec}_bs_{batch_size}_lr_{lr}.json'
# # Calculate and plot rolling average rewards for DQN
# if os.path.isfile(dqn_filename):
# with open(dqn_filename, 'r') as fp:
# dqn_scores = json.load(fp)
# rolling_avg_dqn_scores = np.convolve(dqn_scores, np.ones(rolling_window)/rolling_window, mode='valid')
# plt.plot(range(rolling_window, len(dqn_scores) + 1), rolling_avg_dqn_scores, label=f'DQN eps={epsilon}, eps_d={epsilon_dec}, bs={batch_size}, lr={lr}', linestyle='--')
# # Finalize the plot for rolling average rewards
# plt.xlabel('Episode', fontsize=17)
# plt.ylabel(f'Rolling Average Reward (over {rolling_window} episodes)', fontsize=17)
# plt.title('Rolling Average Reward per Episode: DQN (All Configurations)', fontsize=17)
# # plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
# plt.legend()
# plt.ylim(-200)
# plt.grid(True)
# # Save and show the rolling average reward plot
# rolling_avg_plot_filename = 'plots/dqn_vs_ddqn/reward_rolling_avg_comparison_DQN_all_configs.png'
# plt.savefig(rolling_avg_plot_filename, bbox_inches='tight')
# print(f"Rolling average reward plot saved to: {rolling_avg_plot_filename}")
# plt.show()