Skip to content

GPU memory usage of IndexIVFFlat #4650

@jiangtann

Description

@jiangtann

Question 1: options.useFloat16 cannot reduce GPU memory usage

embeddings = np.random.rand(5000000, 2048).astype(np.float32)

index = faiss.IndexFlatIP(2048)
index = faiss.IndexIVFFlat(index, 2048, 32768)

options = faiss.GpuMultipleClonerOptions()
options.shard = True
options.useFloat16 = True
gpu_index = faiss.index_cpu_to_all_gpus(index, co=options, ngpu=1)

gpu_index.train(embeddings[:1000000])

gpu_index.add(embeddings)

Whether I set options.useFloat16 = True or not, the GPU memory usage remains consistent. Does IndexIVF (e.g. IndexIVFFlat, IndexIVFPQ) require all vectors to be stored in fp32?

Question 2: How to further reduce GPU memory usage

I have a huge (56000000, 2048) embedding, which is similar to #4502. I use 8 A100 80G GPUs to perform index.add. Even though this embedding alone consumes 56,000,000 * 2048 * 4 bytes, approximately 427GB, due to useFloat16 not working and extra GPU memory usage, my total of 640GB across 8 A100 GPUs still couldn't smoothly complete the index.add operation.

Are there any methods to reduce GPU memory usage? Or is it impossible for me to use IndexIVFFlat in this situation?

Metadata

Metadata

Assignees

Labels

No labels
No labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions