-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtlcl.py
executable file
·230 lines (191 loc) · 7.77 KB
/
tlcl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#!/usr/bin/env python3
import re
import io
import sys
import requests
import argparse
import json
import time
import signal
from IPython import InteractiveShell
from contextlib import contextmanager, redirect_stdout, redirect_stderr
from pathlib import Path
DEFAULT_SYSTEM_PROMPT="""Environment: ipython
Tools: brave_search
# Tool Instructions
- You have access to the stateful ipython environment
- After executing the python program summarize its output for the user
"""
def generate_log_file_name():
current_time = time.strftime("%Y-%m-%d-%H-%M-%S")
log_filename = f"tlcl-{current_time}.log"
return log_filename
parser = argparse.ArgumentParser()
parser.add_argument("-u", "--url", help="URL of the llama.cpp server completion endpoint", default="http://127.0.0.1:8080/completion", type=str)
parser.add_argument("-s", "--system-prompt", help = "System prompt", default=DEFAULT_SYSTEM_PROMPT, type=str)
parser.add_argument("-p", "--prompt", help="User prompt", default=None, type=str)
parser.add_argument("-i", "--interactive", help="Run in interactive mode", action='store_true')
parser.add_argument("-a", "--autonomous", help="Run in autonomous mode", action='store_true')
parser.add_argument("-t", "--stream", help="Print received tokens in real time", action='store_true')
parser.add_argument("-l", "--log", help="Log standard output to a file", const=generate_log_file_name(), default=None, nargs='?')
parser.add_argument("-v", "--verbose", help="Increase verbosity of the output", action='store_true')
args = parser.parse_args()
llama_endpoint = args.url
system_prompt = args.system_prompt
user_prompt = args.prompt
is_interactive = args.interactive
is_verbose = args.verbose
is_stream = args.stream
is_auto = args.autonomous
log_file = args.log
system_prompt_file = None
if system_prompt and Path(system_prompt).is_file():
system_prompt_file = system_prompt
system_prompt_mtime = Path(system_prompt_file).stat().st_mtime
with open(system_prompt, 'r') as file:
system_prompt = file.read()
if user_prompt and Path(user_prompt).is_file():
with open(user_prompt, 'r') as file:
user_prompt = file.read()
@contextmanager
def capture_output():
buffer = io.StringIO()
with redirect_stdout(buffer), redirect_stderr(buffer):
yield buffer
class IPythonSession:
def __init__(self):
# Create an instance of InteractiveShell
self.shell = InteractiveShell.instance()
def execute(self, code: str) -> str:
"""Execute code and return the output or error message."""
with capture_output() as buffer:
try:
result = self.shell.run_cell(code)
if result.success:
output = buffer.getvalue()
return output if output else "No output"
else:
return f"Error during execution:\n{buffer.getvalue()}"
except Exception as e:
return f"Exception: {e}"
class Tee(object):
def __init__(self, log_file_name):
self.log_file = open(log_file_name, "w")
self.stdout = sys.stdout
sys.stdout = self
def close(self):
sys.stdout = self.stdout
self.log_file.close()
def write(self, data):
self.log_file.write(data)
self.stdout.write(data)
def flush(self):
self.log_file.flush()
self.stdout.flush()
tee = Tee(log_file) if log_file is not None else None
def signal_handler(signum, frame):
print("\nExiting...")
global tee
if tee is not None:
tee.close()
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
def apply_prompt_template(role, prompt = None):
if prompt:
return f"<|start_header_id|>{role}<|end_header_id|>\n\n{prompt}<|eot_id|>"
else:
return f"<|start_header_id|>{role}<|end_header_id|>\n\n"
def create_request_data(prompt):
return {
"cache_prompt": True,
"stream": is_stream,
"prompt": prompt,
}
def print_role_header(role):
print("#" * 32 + f" role: {role:<10} " + "#" * 32)
def print_last_message(conversation, is_verbose, end="\n"):
last_message_index = conversation.rfind("<|start_header_id|>")
assert(last_message_index >= 0)
last_message = conversation[last_message_index:]
print(last_message, end=end)
def input_if_none(user_prompt):
if user_prompt is None:
return input("User prompt: ")
else:
return user_prompt
headers = { "Content-Type": "application/json" }
python_tag_regex = re.compile(re.escape("<|python_tag|>") + "(.*?)" + re.escape("<|eom_id|>"), re.DOTALL)
ipython_session = IPythonSession()
ipython_session.execute("import brave_search")
print_role_header("system")
conversation = apply_prompt_template("system", system_prompt)
print_last_message(conversation, is_verbose)
if is_auto and user_prompt is None:
print_role_header("user")
conversation += apply_prompt_template("user")
last_role = "user"
else:
print_role_header("user")
conversation += apply_prompt_template("user", input_if_none(user_prompt))
print_last_message(conversation, is_verbose)
print_role_header("assistant")
conversation += apply_prompt_template("assistant")
last_role = "assistant"
while(True):
response = requests.post(llama_endpoint, json=create_request_data(conversation), headers=headers, stream=is_stream)
assert(response.status_code == 200)
if is_stream:
print_last_message(conversation, is_verbose, end="")
response_content = ""
for line in response.iter_lines():
# filter out keep-alive new lines
if line:
decoded_line = line.decode("utf-8")
decoded_json = json.loads(decoded_line.removeprefix("data: "))
if "content" in decoded_json:
partial_content = decoded_json["content"]
response_content += partial_content
conversation += partial_content
print(partial_content, flush=True, end="")
print()
else:
response_content = response.json()["content"]
conversation += response_content
print_last_message(conversation, is_verbose)
if system_prompt_file:
prev_system_prompt_mtime = system_prompt_mtime
system_prompt_mtime = Path(system_prompt_file).stat().st_mtime
if system_prompt_mtime > prev_system_prompt_mtime:
print_role_header("system")
with open(system_prompt_file, 'r') as file:
system_prompt = file.read()
conversation = apply_prompt_template("system", system_prompt)
print_last_message(conversation, is_verbose)
match = python_tag_regex.search(response_content)
if match:
tool_request = match.group(1)
tool_response = ipython_session.execute(tool_request)
print_role_header("ipython")
conversation += apply_prompt_template("ipython", tool_response)
print_last_message(conversation, is_verbose)
print_role_header("assistant")
conversation += apply_prompt_template("assistant")
else:
if is_interactive:
print_role_header("user")
user_input = input("Prompt: ")
conversation += apply_prompt_template("user", user_input)
print_last_message(conversation, is_verbose)
print_role_header("assistant")
conversation += apply_prompt_template("assistant")
elif is_auto:
if last_role == "assistant":
print_role_header("user")
conversation += apply_prompt_template("user")
last_role = "user"
elif last_role == "user":
print_role_header("assistant")
conversation += apply_prompt_template("assistant")
last_role = "assistant"
else:
break