-
Notifications
You must be signed in to change notification settings - Fork 36
/
PeterRec_cau_parallel.py
275 lines (230 loc) · 12.7 KB
/
PeterRec_cau_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import tensorflow as tf
import data_loader_recsys_transfer_finetune as data_loader_recsys
import generator_peterrec_cau_parallel as generator_recsys
import utils
import shutil
import time
import math
import eval
import numpy as np
import argparse
import sys
import ops
#cau-->causal cnn
def random_neq(l, r, s):
t = np.random.randint(l, r)
while t == s:
t = np.random.randint(l, r)
return t
def random_negs(l,r,no,s):
# set_s=set(s)
negs = []
for i in range(no):
t = np.random.randint(l, r)
# while (t in set_s):
while (t== s):
t = np.random.randint(l, r)
negs.append(t)
return negs
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--top_k', type=int, default=5,
help='Sample from top k predictions')
parser.add_argument('--beta1', type=float, default=0.9,
help='hyperpara-Adam')
parser.add_argument('--eval_iter', type=int, default=1000,
help='Sample generator output evry x steps')
parser.add_argument('--save_para_every', type=int, default=1000,
help='save model parameters every')
parser.add_argument('--datapath', type=str, default='Data/Session/history_sequences_20181014_fajie_transfer_finetune_small.csv',
help='data path')
parser.add_argument('--tt_percentage', type=float, default=0.9,
help='default=0.2 means 80% training 20% testing')
parser.add_argument('--is_generatesubsession', type=bool, default=False,
help='whether generating a subsessions, e.g., 12345-->01234,00123,00012 It may be useful for very some very long sequences')
parser.add_argument('--has_positionalembedding', type=bool, default=False,
help='whether contains positional embedding before performing cnnn')
parser.add_argument('--padtoken', type=str, default='0',
help='is the padding token in the beggining of the sequence')
parser.add_argument('--negtive_samples', type=int, default='99',
help='the number of negative examples for each positive one')
args = parser.parse_args()
dl = data_loader_recsys.Data_Loader({'model_type': 'generator', 'dir_name': args.datapath})
all_samples = dl.example
items = dl.item_dict
items_len = len(items)
print "len(items)", len(items)
targets = dl.target_dict
targets_len=len(targets)
print "len(targets)", len(targets)
negtive_samples=args.negtive_samples
top_k=args.top_k
if items.has_key(args.padtoken):
padtoken = items[args.padtoken] # is the padding token in the beggining of the sentence
else:
padtoken=len(items)+1
# Randomly shuffle data you cannnot change np.random.seed(10) unless you change it in nextitred.py
np.random.seed(10)
shuffle_indices = np.random.permutation(np.arange(len(all_samples)))
all_samples = all_samples[shuffle_indices]
# Split train/test set
dev_sample_index = -1 * int(args.tt_percentage * float(len(all_samples)))
train_set, valid_set = all_samples[:dev_sample_index], all_samples[dev_sample_index:]
model_para = {
#all parameters shuold be consist with those in NextitNet_TF_Pretrain.py!!!!
'item_size': len(items),
'target_item_size': len(targets),
'dilated_channels': 64,
'cardinality': 1, #using a large number does not performs better. cardinality=1 denotes the standard residual block
'dilations': [1,4,1,4,1,4,1,4,],
'kernel_size': 3,
'learning_rate':0.001,
'batch_size':3, #you can not use batch_size=1 since we use np.squeeze will reuduce one dimension
'iterations': 400,
'has_positionalembedding': args.has_positionalembedding
}
itemrec = generator_recsys.NextItNet_Decoder(model_para)
itemrec.train_graph(cardinality=model_para['cardinality'],mp=True)
sess = tf.Session()
init = tf.global_variables_initializer()
trainable_vars=tf.trainable_variables()
variables_to_restore = [v for v in trainable_vars if v.name.find("mp")==-1 ]
mp_vars = [v for v in trainable_vars if v.name.find("mp") != -1]
layer_norm2 = [v for v in trainable_vars if v.name.find("layer_norm2") != -1]# we suggest retraining layer_norm2 for parallel insertion--sometimes slightly better, around 0.3-0.5%
sess.run(init)
saver = tf.train.Saver(variables_to_restore)
saver.restore(sess, "Data/Models/generation_model/model_nextitnet_transfer_pretrain.ckpt")
print sess.run(variables_to_restore[0])
# source_item_embedding=tf.reduce_mean(itemrec.dilate_input,1)
source_item_embedding = tf.reduce_mean(itemrec.dilate_input[:,-1:,:], 1)# use the last token
# source_item_embedding=tf.add(itemrec.dilate_input[:,0,:],itemrec.dilate_input[:,-2,:])
embedding_size = tf.shape(source_item_embedding)[1]
with tf.variable_scope("target-item"):
allitem_embeddings_target = tf.get_variable('allitem_embeddings_target',
[model_para['target_item_size'],
model_para['dilated_channels']],
initializer=tf.truncated_normal_initializer(stddev=0.02),
regularizer=tf.contrib.layers.l2_regularizer(0.02)
)
is_training = tf.placeholder(tf.bool, shape=())
# training
itemseq_input_target_pos = tf.placeholder('int32',
[None, None], name='itemseq_input_pos')
itemseq_input_target_neg = tf.placeholder('int32',
[None, None], name='itemseq_input_neg')
target_item_embedding_pos = tf.nn.embedding_lookup(allitem_embeddings_target,
itemseq_input_target_pos,
name="target_item_embedding_pos")
target_item_embedding_neg = tf.nn.embedding_lookup(allitem_embeddings_target,
itemseq_input_target_neg,
name="target_item_embedding_neg")
pos_score = source_item_embedding * tf.reshape(target_item_embedding_pos, [-1, embedding_size])
neg_score = source_item_embedding * tf.reshape(target_item_embedding_neg, [-1, embedding_size])
pos_logits = tf.reduce_sum(pos_score, -1)
neg_logits = tf.reduce_sum(neg_score, -1)
# testing
itemseq_input_target_label = tf.placeholder('int32',
[None, None], name='itemseq_input_target_label')
tf.add_to_collection("itemseq_input_target_label", itemseq_input_target_label)
target_label_item_embedding = tf.nn.embedding_lookup(allitem_embeddings_target,
itemseq_input_target_label,
name="target_label_item_embedding")
source_item_embedding_test = tf.expand_dims(source_item_embedding, 1) # (batch, 1, embeddingsize)
target_item_embedding = tf.transpose(target_label_item_embedding, [0, 2, 1]) # transpose
score_test = tf.matmul(source_item_embedding_test, target_item_embedding)
top_k_test = tf.nn.top_k(score_test[:, :], k=top_k, name='top-k')
tf.add_to_collection("top_k", top_k_test[1])
loss = tf.reduce_mean(
- tf.log(tf.sigmoid(pos_logits) + 1e-24) -
tf.log(1 - tf.sigmoid(neg_logits) + 1e-24)
)
#BPR loss
# loss=-tf.reduce_mean(tf.log(tf.sigmoid(pos_logits-neg_logits)))+ 1e-24
reg_losses = tf.reduce_mean(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
loss += reg_losses
sc_variable2 = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='target-item')
optimizer = tf.train.AdamOptimizer(model_para['learning_rate'], beta1=args.beta1, name='Adam').minimize(loss,var_list=[sc_variable2,mp_vars,layer_norm2])
unitialized_vars = []
for var in tf.global_variables():
try:
sess.run(var)
except tf.errors.FailedPreconditionError:
unitialized_vars.append(var)
initialize_op = tf.variables_initializer(unitialized_vars)
# vars = tf.trainable_variables()
sess.run(initialize_op)
numIters = 1
for iter in range(model_para['iterations']):
batch_no = 0
batch_size = model_para['batch_size']
while (batch_no + 1) * batch_size < train_set.shape[0]:
start = time.time()
#the first n-1 is source, the last one is target
#item_batch=[[1,2,3],[4,5,6]]
item_batch = train_set[batch_no * batch_size: (batch_no + 1) * batch_size, :]
pos_batch=item_batch[:,-1]#[3 6] used for negative sampling
# source_batch=item_batch[:,:-1]#
pos_target=item_batch[:,-1:]#[[3][6]]
neg_target = np.array([[random_neq(1, targets_len, s)] for s in pos_batch])
_, loss_out, reg_losses_out = sess.run(
[optimizer, loss, reg_losses],
feed_dict={
itemrec.itemseq_input: item_batch,
itemseq_input_target_pos:pos_target,
itemseq_input_target_neg:neg_target
})
end = time.time()
if numIters % args.eval_iter == 0:
print "-------------------------------------------------------train1"
print "LOSS: {}\Reg_LOSS: {}\tITER: {}\tBATCH_NO: {}\t STEP:{}\t total_batches:{}".format(
loss_out, reg_losses_out,iter, batch_no, numIters, train_set.shape[0] / batch_size)
print "TIME FOR BATCH", end - start
print "TIME FOR ITER (mins)", (end - start) * (train_set.shape[0] / batch_size) / 60.0
batch_no += 1
if numIters % args.eval_iter == 0:
batch_no_test = 0
batch_size_test = batch_size * 1
hits = [] # 1
mrrs = [] # ---add 1
while (batch_no_test + 1) * batch_size_test < valid_set.shape[0]:
if (numIters / (args.eval_iter) < 10):
if (batch_no_test > 20):
break
else:
if (batch_no_test > 500):
break
item_batch = valid_set[batch_no_test * batch_size_test: (batch_no_test + 1) * batch_size_test, :]
pos_batch = item_batch[:, -1] # [3 6] used for negative sampling
# source_batch = item_batch[:, :-1] #
pos_target = item_batch[:, -1:] # [[3][6]]
# randomly choose 99 negative items
neg_target = np.array([random_negs(1, targets_len, negtive_samples, s) for s in pos_batch])
target=np.array(np.concatenate([neg_target,pos_target],1))
[top_k_batch] = sess.run(
[top_k_test],
feed_dict={
itemrec.itemseq_input: item_batch,
itemseq_input_target_label: target
})
#note that in top_k_batch[1], such as [1 9 4 5 0], we just need to check whether 0 is here, that's fine
top_k=np.squeeze(top_k_batch[1]) #remove one dimension since e.g., [[[1,2,4]],[[34,2,4]]]-->[[1,2,4],[34,2,4]]
for i in range(top_k.shape[0]):
top_k_per_batch=top_k[i]
predictmap = {ch: i for i, ch in enumerate(top_k_per_batch)} # add 2
rank = predictmap.get(negtive_samples) # add 3
if rank == None:
hits.append(0.0)
mrrs.append(0.0) # add 5
else:
hits.append(1.0)
mrrs.append(1.0 / (rank + 1)) # add 4
batch_no_test += 1
print "-------------------------------------------------------Accuracy"
if len(hits)!=0:
print "Accuracy hit_n:", sum(hits) / float(len(hits)),"MRR_n:", sum(mrrs) / float(len(mrrs)) # 5
numIters += 1
# if numIters % args.save_para_every == 0:
# save_path = saver.save(sess,
# "Data/Models/generation_model/nextitnet_cloze_transfer_finetune_avg".format(iter, numIters))
if __name__ == '__main__':
main()