forked from chack1920/tensorflow_face_recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
get_features_into_csv_tensorflow.py
124 lines (102 loc) · 7.5 KB
/
get_features_into_csv_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from scipy import misc
import tensorflow as tf
import numpy as np
import pandas as pd
import dlib
import os
import csv
import cv2
import shutil
import facenet
import align.detect_face
model_path="20180402-114759/20180402-114759.pb" #模型保存的路径
image_paths_uncalculated='data_faces_from_camera/Uncalculated/' #Uncalculated文件夹下为未经过计算转化的人脸文件
image_paths_calculated='data_faces_from_camera/calculated/' #calculated文件夹下为经过计算转化的人脸文件
path_csv_feature="data_csvs_from_camera/" #存放每个人的人脸的csv
path_csv_feature_all="features_all_tensorflow.csv" #存放全部人的人脸特征
detector = dlib.get_frontal_face_detector()
#找到人脸以及给出人脸框数组
def load_and_align_data(image_path,image_size,margin): #margin为要剪裁的余量
minisize=20 # minimum size of face
threshold = [0.6, 0.7, 0.7] # three steps's threshold
factor = 0.709 # scale factor
img = misc.imread(os.path.expanduser(image_path)) # 读取图片
img_size = np.asarray(img.shape)[0:2] # img[0]为宽度,img[1]为高度
bounding_boxes, _ = align.detect_face.detect_face(img, minisize, pnet, rnet, onet, threshold,
factor) # 读取并对齐人脸,bounding_boxes为人脸框数组,形状为[n,5],n代表边框数,这里一般只有1张人脸,5对应x1,y1,x2,y2,score,分别是左上角横坐标,左上角纵坐标,右下角横坐标,右下角纵坐标,人脸置信度
det=np.squeeze(bounding_boxes[0,0:4]) #假设图片里的人脸数为1,所以这里要去除边框数那一维
bb=np.zeros(4,dtype=np.int32) #bb为要剪裁的人脸区域
bb[0]=np.maximum(det[0]-margin/2,0) #左上角x1
bb[1]=np.maximum(det[1]-margin/2,0) #左上角y1
bb[2]=np.minimum(det[2]+margin/2,img_size[1]) #右下角x2
bb[3]=np.minimum(det[3]+margin/2,img_size[0]) #右下角y2
cropped=img[bb[1]:bb[3],bb[0]:bb[2],:] #根据bb来裁剪原图片中的人脸
aligned=misc.imresize(cropped,(image_size,image_size),interp='bilinear') #将图片缩放为卷积神经网络模型输入的大小
prewhitened=facenet.prewhiten(aligned) #对裁剪出的人脸进行图片标准化处理
return prewhitened
#计算并返回人脸特征
def return_512D_features(image_path,images_placeholder,embeddings,phase_train_placeholder):
images=load_and_align_data(image_path,160,44) #使用MTCNN算法找到图片中的人脸并给出人脸框数组
images=images.reshape(1,160,160,3)
feed_dict={images_placeholder:images,phase_train_placeholder:False}
emb=sess.run(embeddings,feed_dict=feed_dict) #计算人脸特征,得到人脸特征数组
return emb
#将uncalculated文件夹下面的人脸计算转化为512维的特征数组并写进个人csv文件
def compute_feaure_and_write_into_csv(image_paths_uncalculated,images_placeholder,embeddings,phase_train_placeholder):
person_list=os.listdir(image_paths_uncalculated)
if len(person_list)>0: #uncalculated文件夹下有人脸文件才计算,否则输出没有人脸
for person in person_list: #person为uncalculated中每个文件夹的名字,这里建议命名为人的名字
print(path_csv_feature+person+".csv")
path_csv=path_csv_feature+person+".csv" #path_csv为以某人的名字命名的csv文件的路径
path_faces_personX=image_paths_uncalculated+person #path_faces_personX为每个人的人脸文件夹
images=os.listdir(path_faces_personX) #列出每个人脸文件夹下面的图片
with open(path_csv,"w",newline="") as csvfile:
writer=csv.writer(csvfile) #创建一个writer对象
for i in range(len(images)):
if os.path.exists(path_faces_personX + "/" + images[i]):
print("正在读的人脸图像:", path_faces_personX + "/" + images[i])
feature_512D=return_512D_features(path_faces_personX+"/"+images[i],images_placeholder,embeddings,phase_train_placeholder) #计算每张人脸图片,返回第i张图片的特征数组
feature_512D=np.squeeze(feature_512D) #将feature_512D转化为1维数组
feature_512D=list(feature_512D)
if len(feature_512D)<1: #feature_512D长度小于1可能是没检测到人脸,所以跳过
i+=1
else:
writer.writerow(feature_512D) #将feature_512D写进csv文件
shutil.move(image_paths_uncalculated+person,image_paths_calculated) #当一个人的所有图片被计算完后,就把这个人的人脸文件夹移到calculated文件夹下
else:
print("没有人脸可计算")
def compute_the_mean_and_write_into_all_csv(path_csv_feature):
with open(path_csv_feature_all,"w",newline="")as csvfile:
writer=csv.writer(csvfile)
csv_rd=os.listdir(path_csv_feature) #csv_rd为path_csv_feature下所有人的csv文件
for i in range(len(csv_rd)):
path_csv_rd=path_csv_feature+csv_rd[i] #path_csv_rd为每个人的csv文件的路径
column_names=[] #给下面要读取的每个人的csv文件起列名
for feature_num in range(512):
column_names.append("features_" + str(feature_num + 1))
f=open(path_csv_rd) #打开某人的csv文件
rd=pd.read_csv(f,names=column_names) #读取某人的csv文件,制定列名为column_names
feature_mean=[] #feature_mean为将要写入features_all_tensorflow.csv的列表,一共513列,第1列为名字,剩余512列为特征值
name=path_csv_rd.split('/')[1].split('.')[0] #因为csv文件是以人的名字命名的,所以直接从文件名中获取人的名字
feature_mean.append(name) #第一列存入人的名字
for feature_num in range(512):
tmp_arr=rd["features_" + str(feature_num + 1)] #从某人的csv文件中读取第feature_num列,对应的列名为feature_num + 1
tmp_arr=np.array(tmp_arr) #转化为array
tmp_mean=np.mean(tmp_arr) #计算那一列的特征均值
feature_mean.append(tmp_mean) #将那一列加入到feature_mean中
writer.writerow(feature_mean) #读取完512列后就写入到features_all_tensorflow.csv
if __name__=="__main__":
with tf.Graph().as_default():
config=tf.ConfigProto()
config.gpu_options.allocator_type="BFC"
sess=tf.Session(config=config)
with sess.as_default():
pnet,rnet,onet=align.detect_face.create_mtcnn(sess,None) #加载MTCNN的3层网络,用来检测人脸
# Load the model
facenet.load_model(model_path) #加载人脸识别模型,用来识别人脸
# Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
compute_feaure_and_write_into_csv(image_paths_uncalculated,images_placeholder,embeddings,phase_train_placeholder) #计算uncalculated文件夹下面所有人的人脸特征,将每个人的人脸特征存放到path_csv_feature中
compute_the_mean_and_write_into_all_csv(path_csv_feature)