forked from kaldi-asr/kaldi
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeat_dataset.py
executable file
·181 lines (149 loc) · 6.61 KB
/
feat_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/usr/bin/env python3
# Copyright 2019 Mobvoi AI Lab, Beijing, China (author: Fangjun Kuang)
# Apache 2.0
import os
import math
import numpy as np
import torch
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torch.nn.utils.rnn import pad_sequence
import kaldi_pybind.nnet3 as nnet3
import kaldi
from common import splice_feats
from model import get_chain_model
def get_feat_dataloader(feats_scp,
model_left_context,
model_right_context,
frames_per_chunk=51,
ivector_scp=None,
ivector_period=10,
batch_size=16,
num_workers=10):
dataset = FeatDataset(feats_scp=feats_scp, ivector_scp=ivector_scp)
collate_fn = FeatDatasetCollateFunc(model_left_context=model_left_context,
model_right_context=model_right_context,
frame_subsampling_factor=3,
frames_per_chunk=frames_per_chunk,
ivector_period=ivector_period)
dataloader = DataLoader(dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=False,
collate_fn=collate_fn)
return dataloader
def _add_model_left_right_context(x, left_context, right_context):
padded = x
if left_context > 0:
first_frame = x[0, :]
left_padding = [first_frame] * left_context
padded = np.vstack([left_padding, x])
if right_context > 0:
last_frame = x[-1, :]
right_padding = [last_frame] * right_context
padded = np.vstack([padded, right_padding])
return padded
class FeatDataset(Dataset):
def __init__(self, feats_scp, ivector_scp=None):
assert os.path.isfile(feats_scp)
self.feats_scp = feats_scp
# items is a dict of {key: [key, rxfilename, ivec]}
items = dict()
with open(feats_scp, 'r') as f:
for line in f:
split = line.split()
assert len(split) == 2
uttid, rxfilename =split
assert uttid not in items
items[uttid] = [uttid, rxfilename, None]
if ivector_scp:
self.ivector_scp = ivector_scp
expected_count = len(items)
n = 0
with open(ivector_scp, 'r') as f:
for line in f:
uttid_rxfilename = line.split()
assert len(uttid_rxfilename) == 2
uttid, rxfilename = uttid_rxfilename
assert uttid in items
items[uttid][-1] = rxfilename
n += 1
assert n == expected_count
self.items = list(items.values())
self.num_items = len(self.items)
def __len__(self):
return self.num_items
def __getitem__(self, i):
return self.items[i]
def __str__(self):
s = 'feats scp: {}\n'.format(self.feats_scp)
if self.ivector_scp:
s += 'ivector_scp scp: {}\n'.format(self.ivector_scp)
s += 'num utt: {}\n'.format(self.num_items)
return s
class FeatDatasetCollateFunc:
def __init__(self,
model_left_context,
model_right_context,
frame_subsampling_factor=3,
frames_per_chunk=51,
ivector_period=10):
'''
We need `frame_subsampling_factor` because we want to know
the number of output frames of different waves in the same batch
'''
self.model_left_context = model_left_context
self.model_right_context = model_right_context
self.frame_subsampling_factor = frame_subsampling_factor
self.frames_per_chunk = frames_per_chunk
self.ivector_period = ivector_period
def __call__(self, batch):
'''
batch is a list of [key, rxfilename]
'''
key_list = []
feat_list = []
ivector_list = []
ivector_len_list = []
output_len_list = []
subsampled_frames_per_chunk = (self.frames_per_chunk //
self.frame_subsampling_factor)
for b in batch:
key, rxfilename, ivector_rxfilename = b
key_list.append(key)
feat = kaldi.read_mat(rxfilename).numpy()
if ivector_rxfilename:
ivector = kaldi.read_mat(ivector_rxfilename).numpy() # L // 10 * C
feat_len = feat.shape[0]
output_len = (feat_len + self.frame_subsampling_factor -
1) // self.frame_subsampling_factor
output_len_list.append(output_len)
# now add model left and right context
feat = _add_model_left_right_context(feat, self.model_left_context,
self.model_right_context)
feat = splice_feats(feat)
# now we split feat to chunk, then we can do decode by chunk
input_num_frames = (feat.shape[0] + 2
- self.model_left_context - self.model_right_context)
for i in range(0, output_len, subsampled_frames_per_chunk):
# input len:418 -> output len:140 -> output chunk:[0, 17, 34, 51, 68, 85, 102, 119, 136]
first_output = i * self.frame_subsampling_factor
last_output = min(input_num_frames, \
first_output + (subsampled_frames_per_chunk-1) * self.frame_subsampling_factor)
first_input = first_output
last_input = last_output + self.model_left_context + self.model_right_context
input_x = feat[first_input:last_input+1, :]
if ivector_rxfilename:
ivector_index = (first_output + last_output) // 2 // self.ivector_period
input_ivector = ivector[ivector_index, :].reshape(1,-1)
feat_list.append(np.concatenate((input_x,
np.repeat(input_ivector, input_x.shape[0], axis=0)),
axis=-1))
else:
feat_list.append(input_x)
padded_feat = pad_sequence(
[torch.from_numpy(feat).float() for feat in feat_list],
batch_first=True)
assert sum([math.ceil(l / subsampled_frames_per_chunk) for l in output_len_list]) \
== padded_feat.shape[0]
return key_list, padded_feat, output_len_list