-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpreprocess_data.py
82 lines (76 loc) · 3.84 KB
/
preprocess_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import argparse
import data_preprocess
def parse_arguments():
# options for running initial stereo matching and generate confidence maps
parser = argparse.ArgumentParser(description="Initial Stereo Matching")
parser.add_argument("--dataset_path",
type=str,
help="Directory to the dataset",
default=os.getenv('data_path'))
# default=os.path.expanduser("~/Documents/Datasets/"))
parser.add_argument("--dataset_name",
type=str,
help="Name of the dataset",
choices=["kitti2015", "kitti2012", "SceneFlow"],
default="SceneFlow")
parser.add_argument("--max_disp",
type=int,
help="Maximum disparity for stereo matching",
default=192)
parser.add_argument("--block_size",
type=int,
help="Block size for stereo matching",
default=3)
parser.add_argument("--match_method",
type=str,
help="Choose stereo matching methods to generate the disparity maps",
choices=["localBM", "SGBM"],
default="SGBM")
parser.add_argument("--device",
type=str,
help="Preprocessing device",
choices=["cpu", "cuda"],
default="cuda")
parser.add_argument("--full_ZSAD",
action="store_true",
help="if set, ZSAD is calculated for a full 3x3 window. Otherwise, it's calculated for a partial window")
parser.add_argument("--train_val_split_per",
type=float,
help="The ratio used to split data into train/val set. Set it to None if not needed. If set to "
"0.8, 80% of data is used for training and the rest for validation",
default=0.8)
parser.add_argument("--random_seed",
type=int,
help="Random seed for splitting the dataset into train/val set. Used in KITTI",
default=75)
opt = parser.parse_args()
return opt
def main(opt):
preprocessor_dict = {"kitti2015": data_preprocess.Kitti15Preprocessor,
"kitti2012": data_preprocess.Kitti12Preprocessor,
"SceneFlow": data_preprocess.SceneFlowPreprocessor}
preprocessor = preprocessor_dict[opt.dataset_name]
dataset_path = os.path.join(opt.dataset_path, opt.dataset_name)
if not os.path.exists(dataset_path):
print("Dataset not found")
raise RuntimeError
if opt.dataset_name == "kitti2015" or opt.dataset_name == "kitti2012":
assert opt.train_val_split_per is not None, "Need to specify the train and val split for this dataset"
preprocessor = preprocessor(dataset_path, opt.max_disp, opt.block_size, opt.match_method, opt.device,
opt.full_ZSAD, opt.train_val_split_per, opt.random_seed)
else:
preprocessor = preprocessor(dataset_path, opt.max_disp, opt.block_size, opt.match_method, opt.device,
opt.full_ZSAD)
print("Start preprocessing %s dataset" % opt.dataset_name)
print("Stereo method: %s" % opt.match_method)
print("Max disparity %d" % opt.max_disp)
print("Block size: %d" % opt.block_size)
print("Full ZSAD: %r" % opt.full_ZSAD)
print("Train and validation split (for KITTI): %.2f" % opt.train_val_split_per)
print("Random seed (for KITTI): %d" % opt.random_seed)
print("Device: %s" % opt.device)
preprocessor.preprocess()
if __name__ == '__main__':
options = parse_arguments()
main(options)