-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproject.py
113 lines (86 loc) · 2.11 KB
/
project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# -*- coding: utf-8 -*-
"""
Created on Sun May 6 13:04:56 2018
@author: fengh
"""
# Midterm Project
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Q1
data = pd.read_csv('BusinessData.csv')
data.head(10)
# Q2
data.shape
# Q3
data['OrderDate'] = pd.to_datetime(data.OrderDate)
data.head(5)
# Q4
# part a
pd.isnull(data)
data.iloc[0: 10]
# part b
a = data.isnull().any()
# Q5
b = data.UnitPrice.mean()
data.fillna(value=b, inplace=True)
data.head(10)
# Q6
data.drop(['ProductID', 'CustomerID'], axis=1, inplace=True)
# Q7
data["TotalSales"] = data.UnitPrice * data.Quantity
data.head(5)
# Q8
data["TotalCost"] = data.UnitCost * data.Quantity
data.head(5)
# Q9
data["Profit"] = data.TotalSales - data.TotalCost
data.head(5)
# Q10
# part c
data[["ProductName", "Customer", "SalesRep"]].describe()
# part d
data[["Quantity", "UnitPrice", "UnitCost", "TotalSales", "TotalCost", "Profit"]].describe()
# Q11
data[["Quantity", "UnitPrice", "UnitCost", "TotalSales", "TotalCost", "Profit"]].agg(['mean', 'min', 'max', 'std', 'var', 'median'])
# Q12
data["Profit"].sum()
# Q13
plt.figure()
plt.plot(data.OrderDate, data.TotalSales)
plt.xticks(rotation=90)
plt.title("Total Sales Time Series Graph")
plt.xlabel("Order Date")
plt.ylabel("Total Sales")
plt.show()
# Q14
# part a
pd.unique(data.SalesRep)
# part b
counts = pd.value_counts(data.SalesRep)
counts = pd.DataFrame(counts)
# part c
plt.grid(True)
objects = tuple(counts.index)
plt.bar(np.arange(len(counts.index)), counts.SalesRep)
plt.xticks(np.arange(3),objects)
plt.xlabel('Name of Representatives')
plt.ylabel('Number of Business Transactions')
plt.show()
# part d
# showing actrual value on pie chart
def absolute_value(val):
a = np.round(val/100*counts['SalesRep'].sum(), 0)
return a
plt.pie(counts, labels=counts.index,autopct=absolute_value,shadow=True)
# 15
# part a
SalesRep_ProdCount = pd.crosstab(data.ProductName, data.SalesRep, margins=True)
SalesRep_ProdCount = pd.DataFrame(SalesRep_ProdCount)
# part b
SalesRep_ProdCount.plot.bar()
# Q16
data['Quantity'].groupby(data.ProductName)
# 17
PR = data[data.ProductName == 'Pop Rocks']
PR.mean()