|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +# Copyright FMR LLC <[email protected]> |
| 3 | +# SPDX-License-Identifier: GNU GPLv3 |
| 4 | + |
| 5 | +from catboost import CatBoostClassifier, CatBoostRegressor |
| 6 | +from lightgbm import LGBMClassifier, LGBMRegressor |
| 7 | +from sklearn.datasets import load_boston, load_iris |
| 8 | +from sklearn.ensemble import AdaBoostClassifier, AdaBoostRegressor |
| 9 | +from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor |
| 10 | +from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor |
| 11 | +from xgboost import XGBClassifier, XGBRegressor |
| 12 | + |
| 13 | +from feature.utils import get_data_label |
| 14 | +from feature.selector import SelectionMethod, benchmark |
| 15 | +from tests.test_base import BaseTest |
| 16 | + |
| 17 | + |
| 18 | +class TestParallel(BaseTest): |
| 19 | + |
| 20 | + num_features = 3 |
| 21 | + corr_threshold = 0.5 |
| 22 | + alpha = 1000 |
| 23 | + tree_params = {"random_state": 123, "n_estimators": 100} |
| 24 | + |
| 25 | + selectors = { |
| 26 | + "corr_pearson": SelectionMethod.Correlation(corr_threshold, method="pearson"), |
| 27 | + "corr_kendall": SelectionMethod.Correlation(corr_threshold, method="kendall"), |
| 28 | + "corr_spearman": SelectionMethod.Correlation(corr_threshold, method="spearman"), |
| 29 | + "univ_anova": SelectionMethod.Statistical(num_features, method="anova"), |
| 30 | + "univ_chi_square": SelectionMethod.Statistical(num_features, method="chi_square"), |
| 31 | + "univ_mutual_info": SelectionMethod.Statistical(num_features, method="mutual_info"), |
| 32 | + "linear": SelectionMethod.Linear(num_features, regularization="none"), |
| 33 | + "lasso": SelectionMethod.Linear(num_features, regularization="lasso", alpha=alpha), |
| 34 | + "ridge": SelectionMethod.Linear(num_features, regularization="ridge", alpha=alpha), |
| 35 | + "random_forest": SelectionMethod.TreeBased(num_features), |
| 36 | + "xgboost_clf": SelectionMethod.TreeBased(num_features, estimator=XGBClassifier(**tree_params)), |
| 37 | + "xgboost_reg": SelectionMethod.TreeBased(num_features, estimator=XGBRegressor(**tree_params)), |
| 38 | + "extra_clf": SelectionMethod.TreeBased(num_features, estimator=ExtraTreesClassifier(**tree_params)), |
| 39 | + "extra_reg": SelectionMethod.TreeBased(num_features, estimator=ExtraTreesRegressor(**tree_params)), |
| 40 | + "lgbm_clf": SelectionMethod.TreeBased(num_features, estimator=LGBMClassifier(**tree_params)), |
| 41 | + "lgbm_reg": SelectionMethod.TreeBased(num_features, estimator=LGBMRegressor(**tree_params)), |
| 42 | + "gradient_clf": SelectionMethod.TreeBased(num_features, estimator=GradientBoostingClassifier(**tree_params)), |
| 43 | + "gradient_reg": SelectionMethod.TreeBased(num_features, estimator=GradientBoostingRegressor(**tree_params)), |
| 44 | + "adaboost_clf": SelectionMethod.TreeBased(num_features, estimator=AdaBoostClassifier(**tree_params)), |
| 45 | + "adaboost_reg": SelectionMethod.TreeBased(num_features, estimator=AdaBoostRegressor(**tree_params)), |
| 46 | + "catboost_clf": SelectionMethod.TreeBased(num_features, estimator=CatBoostClassifier(**tree_params, silent=True)), |
| 47 | + "catboost_reg": SelectionMethod.TreeBased(num_features, estimator=CatBoostRegressor(**tree_params, silent=True)) |
| 48 | + } |
| 49 | + |
| 50 | + def test_benchmark_regression(self): |
| 51 | + data, label = get_data_label(load_boston()) |
| 52 | + data = data.drop(columns=["CHAS", "NOX", "RM", "DIS", "RAD", "TAX", "PTRATIO", "INDUS"]) |
| 53 | + |
| 54 | + # Benchmark |
| 55 | + score_df_sequential, selected_df_sequential, runtime_df_sequential = benchmark(self.selectors, data, label) |
| 56 | + score_df_p1, selected_df_p1, runtime_df_p1 = benchmark(self.selectors, data, label, verbose=True, n_jobs=1) |
| 57 | + score_df_p2, selected_df_p2, runtime_df_p2 = benchmark(self.selectors, data, label, verbose=True, n_jobs=2) |
| 58 | + |
| 59 | + # Scores |
| 60 | + self.assertListAlmostEqual([0.069011, 0.054086, 0.061452, 0.006510, 0.954662], |
| 61 | + score_df_sequential["linear"].to_list()) |
| 62 | + self.assertListAlmostEqual([0.056827, 0.051008, 0.053192, 0.007176, 0.923121], |
| 63 | + score_df_sequential["lasso"].to_list()) |
| 64 | + |
| 65 | + self.assertListAlmostEqual(score_df_sequential["linear"].to_list(), score_df_p1["linear"].to_list()) |
| 66 | + self.assertListAlmostEqual(score_df_sequential["linear"].to_list(), score_df_p2["linear"].to_list()) |
| 67 | + self.assertListAlmostEqual(score_df_sequential["lasso"].to_list(), score_df_p1["lasso"].to_list()) |
| 68 | + self.assertListAlmostEqual(score_df_sequential["lasso"].to_list(), score_df_p2["lasso"].to_list()) |
| 69 | + |
| 70 | + # Selected |
| 71 | + self.assertListEqual([1, 0, 1, 0, 1], selected_df_sequential["linear"].to_list()) |
| 72 | + self.assertListEqual([1, 0, 1, 0, 1], selected_df_sequential["lasso"].to_list()) |
| 73 | + |
| 74 | + self.assertListEqual(selected_df_sequential["linear"].to_list(), selected_df_p1["linear"].to_list()) |
| 75 | + self.assertListEqual(selected_df_sequential["linear"].to_list(), selected_df_p2["linear"].to_list()) |
| 76 | + self.assertListEqual(selected_df_sequential["lasso"].to_list(), selected_df_p1["lasso"].to_list()) |
| 77 | + self.assertListEqual(selected_df_sequential["lasso"].to_list(), selected_df_p2["lasso"].to_list()) |
| 78 | + |
| 79 | + def test_benchmark_classification(self): |
| 80 | + data, label = get_data_label(load_iris()) |
| 81 | + |
| 82 | + # Benchmark |
| 83 | + score_df_sequential, selected_df_sequential, runtime_df_sequential = benchmark(self.selectors, data, label) |
| 84 | + score_df_p1, selected_df_p1, runtime_df_p1 = benchmark(self.selectors, data, label, n_jobs=1) |
| 85 | + score_df_p2, selected_df_p2, runtime_df_p2 = benchmark(self.selectors, data, label, n_jobs=2) |
| 86 | + |
| 87 | + # Scores |
| 88 | + self.assertListAlmostEqual([0.289930, 0.560744, 0.262251, 0.042721], |
| 89 | + score_df_sequential["linear"].to_list()) |
| 90 | + self.assertListAlmostEqual([0.764816, 0.593482, 0.365352, 1.015095], |
| 91 | + score_df_sequential["lasso"].to_list()) |
| 92 | + |
| 93 | + self.assertListAlmostEqual(score_df_sequential["linear"].to_list(), score_df_p1["linear"].to_list()) |
| 94 | + self.assertListAlmostEqual(score_df_sequential["linear"].to_list(), score_df_p2["linear"].to_list()) |
| 95 | + self.assertListAlmostEqual(score_df_sequential["lasso"].to_list(), score_df_p1["lasso"].to_list()) |
| 96 | + self.assertListAlmostEqual(score_df_sequential["lasso"].to_list(), score_df_p2["lasso"].to_list()) |
| 97 | + |
| 98 | + # Selected |
| 99 | + self.assertListEqual([1, 1, 1, 0], selected_df_sequential["linear"].to_list()) |
| 100 | + self.assertListEqual([1, 1, 0, 1], selected_df_sequential["lasso"].to_list()) |
| 101 | + |
| 102 | + self.assertListEqual(selected_df_sequential["linear"].to_list(), selected_df_p1["linear"].to_list()) |
| 103 | + self.assertListEqual(selected_df_sequential["linear"].to_list(), selected_df_p2["linear"].to_list()) |
| 104 | + self.assertListEqual(selected_df_sequential["lasso"].to_list(), selected_df_p1["lasso"].to_list()) |
| 105 | + self.assertListEqual(selected_df_sequential["lasso"].to_list(), selected_df_p2["lasso"].to_list()) |
| 106 | + |
| 107 | + def test_benchmark_regression_cv(self): |
| 108 | + data, label = get_data_label(load_boston()) |
| 109 | + data = data.drop(columns=["CHAS", "NOX", "RM", "DIS", "RAD", "TAX", "PTRATIO", "INDUS"]) |
| 110 | + |
| 111 | + # Benchmark |
| 112 | + score_df_sequential, selected_df_sequential, runtime_df_sequential = benchmark(self.selectors, data, label, |
| 113 | + cv=5, output_filename=None) |
| 114 | + score_df_p1, selected_df_p1, runtime_df_p1 = benchmark(self.selectors, data, label, cv=5, |
| 115 | + output_filename=None, n_jobs=1) |
| 116 | + score_df_p2, selected_df_p2, runtime_df_p2 = benchmark(self.selectors, data, label, cv=5, |
| 117 | + output_filename=None, n_jobs=2) |
| 118 | + |
| 119 | + # Aggregate scores from different cv-folds |
| 120 | + score_df_sequential = score_df_sequential.groupby(score_df_sequential.index).mean() |
| 121 | + score_df_p1 = score_df_p1.groupby(score_df_p1.index).mean() |
| 122 | + score_df_p2 = score_df_p2.groupby(score_df_p2.index).mean() |
| 123 | + |
| 124 | + # Scores |
| 125 | + self.assertListAlmostEqual([0.061577, 0.006446, 0.066933, 0.957603, 0.053797], |
| 126 | + score_df_sequential["linear"].to_list()) |
| 127 | + self.assertListAlmostEqual([0.053294, 0.007117, 0.054563, 0.926039, 0.050716], |
| 128 | + score_df_sequential["lasso"].to_list()) |
| 129 | + |
| 130 | + self.assertListAlmostEqual(score_df_sequential["linear"].to_list(), score_df_p1["linear"].to_list()) |
| 131 | + self.assertListAlmostEqual(score_df_sequential["linear"].to_list(), score_df_p2["linear"].to_list()) |
| 132 | + self.assertListAlmostEqual(score_df_sequential["lasso"].to_list(), score_df_p1["lasso"].to_list()) |
| 133 | + self.assertListAlmostEqual(score_df_sequential["lasso"].to_list(), score_df_p2["lasso"].to_list()) |
| 134 | + |
| 135 | + def test_benchmark_classification_cv(self): |
| 136 | + data, label = get_data_label(load_iris()) |
| 137 | + |
| 138 | + # Benchmark |
| 139 | + score_df_sequential, selected_df_sequential, runtime_df_sequential = benchmark(self.selectors, data, label, |
| 140 | + cv=5, output_filename=None) |
| 141 | + score_df_p1, selected_df_p1, runtime_df_p1 = benchmark(self.selectors, data, label, cv=5, |
| 142 | + output_filename=None, n_jobs=1) |
| 143 | + score_df_p2, selected_df_p2, runtime_df_p2 = benchmark(self.selectors, data, label, cv=5, |
| 144 | + output_filename=None, n_jobs=2) |
| 145 | + |
| 146 | + # Aggregate scores from different cv-folds |
| 147 | + score_df_sequential = score_df_sequential.groupby(score_df_sequential.index).mean() |
| 148 | + score_df_p1 = score_df_p1.groupby(score_df_p1.index).mean() |
| 149 | + score_df_p2 = score_df_p2.groupby(score_df_p2.index).mean() |
| 150 | + |
| 151 | + # Scores |
| 152 | + self.assertListAlmostEqual([0.223276, 0.035431, 0.262547, 0.506591], |
| 153 | + score_df_sequential["linear"].to_list()) |
| 154 | + self.assertListAlmostEqual([0.280393, 0.948935, 0.662777, 0.476188], |
| 155 | + score_df_sequential["lasso"].to_list()) |
| 156 | + |
| 157 | + self.assertListAlmostEqual(score_df_sequential["linear"].to_list(), score_df_p1["linear"].to_list()) |
| 158 | + self.assertListAlmostEqual(score_df_sequential["linear"].to_list(), score_df_p2["linear"].to_list()) |
| 159 | + self.assertListAlmostEqual(score_df_sequential["lasso"].to_list(), score_df_p1["lasso"].to_list()) |
| 160 | + self.assertListAlmostEqual(score_df_sequential["lasso"].to_list(), score_df_p2["lasso"].to_list()) |
0 commit comments