-
Notifications
You must be signed in to change notification settings - Fork 143
/
Copy pathmain.cpp
198 lines (175 loc) · 6.29 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#include <opencv2/opencv.hpp>
#include <iostream>
#include <fstream>
#include <string>
#include <time.h>
//#include <Windows.h>
#include "headers.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <omp.h>
using namespace cv;
using namespace std;
void DrawPredictedImage(cv::Mat_<uchar> image, cv::Mat_<double>& shape){
for (int i = 0; i < shape.rows; i++){
cv::circle(image, cv::Point2f(shape(i, 0), shape(i, 1)), 2, (255));
}
cv::imshow("show image", image);
cv::waitKey(0);
}
void Test(const char* config_file_path){
cout << "parsing config_file: " << config_file_path << endl;
ifstream fin;
fin.open(config_file_path, ifstream::in);
std::string model_name;
fin >> model_name;
cout << "model name is: " << model_name << endl;
bool images_has_ground_truth = false;
fin >> images_has_ground_truth;
if (images_has_ground_truth) {
cout << "the image lists must have ground_truth_shapes!\n" << endl;
}
else{
cout << "the image lists does not have ground_truth_shapes!!!\n" << endl;
}
int path_num;
fin >> path_num;
cout << "reading testing images paths: " << endl;
std::vector<std::string> image_path_prefixes;
std::vector<std::string> image_lists;
for (int i = 0; i < path_num; i++) {
string s;
fin >> s;
cout << s << endl;
image_path_prefixes.push_back(s);
fin >> s;
cout << s << endl;
image_lists.push_back(s);
}
cout << "parsing config file done\n" << endl;
CascadeRegressor cas_load;
cas_load.LoadCascadeRegressor(model_name);
cout << "load model done\n" << endl;
std::vector<cv::Mat_<uchar> > images;
std::vector<cv::Mat_<double> > ground_truth_shapes;
std::vector<BoundingBox> bboxes;
std::cout << "\nLoading test dataset..." << std::endl;
if (images_has_ground_truth) {
LoadImages(images, ground_truth_shapes, bboxes, image_path_prefixes, image_lists);
double error = 0.0;
for (int i = 0; i < images.size(); i++){
cv::Mat_<double> current_shape = ReProjection(cas_load.params_.mean_shape_, bboxes[i]);
cv::Mat_<double> res = cas_load.Predict(images[i], current_shape, bboxes[i]);//, ground_truth_shapes[i]);
double e = CalculateError(ground_truth_shapes[i], res);
// std::cout << "error:" << e << std::endl;
error += e;
// DrawPredictedImage(images[i], res);
}
std::cout << "error: " << error << ", mean error: " << error/images.size() << std::endl;
}
else{
LoadImages(images, bboxes, image_path_prefixes, image_lists);
for (int i = 0; i < images.size(); i++){
cv::Mat_<double> current_shape = ReProjection(cas_load.params_.mean_shape_, bboxes[i]);
cv::Mat_<double> res = cas_load.Predict(images[i], current_shape, bboxes[i]);//, ground_truth_shapes[i]);
DrawPredictedImage(images[i], res);
}
}
}
void Train(const char* config_file_path){
cout << "parsing config_file: " << config_file_path << endl;
ifstream fin;
fin.open(config_file_path, ifstream::in);
std::string model_name;
fin >> model_name;
cout << "\nmodel name is: " << model_name << endl;
Parameters params = Parameters();
fin >> params.local_features_num_
>> params.landmarks_num_per_face_
>> params.regressor_stages_
>> params.tree_depth_
>> params.trees_num_per_forest_
>> params.initial_guess_
>> params.overlap_;
std::vector<double> local_radius_by_stage;
local_radius_by_stage.resize(params.regressor_stages_);
for (int i = 0; i < params.regressor_stages_; i++){
fin >> local_radius_by_stage[i];
}
params.local_radius_by_stage_ = local_radius_by_stage;
params.output();
int path_num;
fin >> path_num;
cout << "\nreading training images paths: " << endl;
std::vector<std::string> image_path_prefixes;
std::vector<std::string> image_lists;
for (int i = 0; i < path_num; i++) {
string s;
fin >> s;
cout << s << endl;
image_path_prefixes.push_back(s);
fin >> s;
cout << s << endl;
image_lists.push_back(s);
}
fin >> path_num;
cout << "\nreading validation images paths: " << endl;
std::vector<std::string> val_image_path_prefixes;
std::vector<std::string> val_image_lists;
for (int i = 0; i < path_num; i++) {
string s;
fin >> s;
cout << s << endl;
val_image_path_prefixes.push_back(s);
fin >> s;
cout << s << endl;
val_image_lists.push_back(s);
}
cout << "parsing config file done\n" << endl;
std::vector<cv::Mat_<uchar> > images;
std::vector<cv::Mat_<double> > ground_truth_shapes;
std::vector<BoundingBox> bboxes;
std::vector<cv::Mat_<uchar> > val_images;
std::vector<cv::Mat_<double> > val_ground_truth_shapes;
std::vector<BoundingBox> val_bboxes;
std::cout << "Loading training dataset..." << std::endl;
LoadImages(images, ground_truth_shapes, bboxes, image_path_prefixes, image_lists);
if (val_image_lists.size() > 0) {
std::cout << "\nLoading validation dataset..." << std::endl;
LoadImages(val_images, val_ground_truth_shapes, val_bboxes, val_image_path_prefixes, val_image_lists);
}
// else{
// std::cout << "your validation dataset is 0" << std::endl;
// }
params.mean_shape_ = GetMeanShape(ground_truth_shapes, bboxes);
CascadeRegressor cas_reg;
cas_reg.val_bboxes_ = val_bboxes;
cas_reg.val_images_ = val_images;
cas_reg.val_ground_truth_shapes_ = val_ground_truth_shapes;
cas_reg.Train(images, ground_truth_shapes, bboxes, params);
std::cout << "finish training, start to saving the model..." << std::endl;
std::cout << "model name: " << model_name << std::endl;
cas_reg.SaveCascadeRegressor(model_name);
std::cout << "save the model successfully\n" << std::endl;
}
int main(int argc, char* argv[])
{
std::cout << "\nuse [./application train train_config_file] to train models" << std::endl;
std::cout << " [./application test test_config_file] to test images\n\n" << std::endl;
if (argc == 3) {
if (strcmp(argv[1], "train") == 0)
{
Train(argv[2]);
return 0;
}
if (strcmp(argv[1], "test") == 0)
{
Test(argv[2]);
return 0;
}
}
else {
std::cout << "\nWRONG!!!" << std::endl;
}
return 0;
}