-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_search_gamma_model.py
218 lines (189 loc) · 11 KB
/
run_search_gamma_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""
Run grid search to find best fitting delta, tau, and alpha using the specified hemodynamic model. Saves results to
mat files and csvs.
Generates QC plots if --max-voxels-safe-for-computation is higher than the number of voxels analyzed
By default, uses canonical hemodynamic model:
h(t>delta) = ((t-delta)/tau)^alpha * exp(-(t-delta)/tau)
h(t<=delta) = 0
Usage for ROI analysis:
python run_search_gamma_model.py \
--par-file /autofs/space/ursa_004/users/HDRmodeling/EEGspikeTrains/DAN5/s06_137-r1.par \
-v \
--out-dir /autofs/space/ursa_004/users/HDRmodeling/HDRmodeling/DAN/s06_137-r1/ \
--out-name DAN_s06_137_r1 \
roi \
--mat-file /autofs/space/ursa_004/users/HDRmodeling/ROItcs_fMRI/mat4HMMregWindu.mat \
--sub-and-run-i 1
Usage for voxel analysis:
python run_search_gamma_model.py \
--par-file /autofs/space/ursa_004/users/HDRmodeling/EEGspikeTrains/DAN5/s06_137-r1.par \
-v \
--out-dir /autofs/space/ursa_004/users/HDRmodeling/HDRmodeling/DAN/s06_137-r1/ \
--out-name DAN_s06_137_r1 \
nii \
--nii-file /autofs/space/ursa_004/users/HDRmodeling/HDRshape/s06_137/rest/fsrest_lh_native/res/res-001.nii.gz
"""
import argparse
import numpy as np
import os
import scipy
from feeg_fmri_sync import SEARCH_TYPES
from feeg_fmri_sync.constants import PLOT_ALPHA, PLOT_DELTA, PLOT_TAU, HEMODYNAMIC_MODEL_KEYS
from feeg_fmri_sync.io import load_roi_from_mat, load_from_nii
from feeg_fmri_sync.constants import EEGData, fMRIData
from feeg_fmri_sync.plotting import (
plot_eeg_hdr_across_delta_tau_alpha_range,
save_plot
)
from feeg_fmri_sync.search import search_voxels_in_depth_without_df
parser = argparse.ArgumentParser()
########################################################################################################################
# Required arguments
########################################################################################################################
parser.add_argument('--par-file', required=True, help=f'EEG spike train (par file) path')
parser.add_argument('--out-dir', required=True, help=f'out file directory')
# TODO: I suspect there are several potential bugs when --out-name is not a pythonic underscored name. Adding testing
# would be a good idea
parser.add_argument('--out-name', required=True, help=f'Name for model')
########################################################################################################################
# Optional arguments
########################################################################################################################
# Computational power configuration
parser.add_argument('--max-voxels-safe-for-expensive-computation', type=int, default=40,
help='Calculating the significance and plotting each voxel fMRI timecourse is very computationally '
'expensive. Automatically raise an error if --get-significance is passed with an fMRI input. '
'Turns off plotting if the number of voxels is above this number')
# EEG info
parser.add_argument('--eeg-sample-frequency', type=int, default=20)
# fMRI file info
parser.add_argument('--tr', type=int, default=800)
parser.add_argument('--num-trs-skipped-at-beginning', type=int, default=1)
# Output info
parser.add_argument('-v', '--verbose', action='store_true')
parser.add_argument('--get-significance', action='store_true',
help='Calculate Pearson\'s Correlation Coefficient and corresponding p-value. '
'WARNING: Calculating the significance is very computationally expensive. '
'An error will be raised if '
'this flag is passed and the fMRI input data has more voxels than '
'--max-voxels-safe-for-expensive-computation')
# Gamma Parameters to Search Over
parser.add_argument('--delta-start', type=float, default=1)
parser.add_argument('--delta-end', type=float, default=3, help='inclusive')
parser.add_argument('--delta-step', type=float, default=0.05)
parser.add_argument('--tau-start', type=float, default=0.75)
parser.add_argument('--tau-end', type=float, default=1.75, help='inclusive')
parser.add_argument('--tau-step', type=float, default=0.05)
parser.add_argument('--alpha-start', type=float, default=1.75)
parser.add_argument('--alpha-end', type=float, default=2.25, help='inclusive')
parser.add_argument('--alpha-step', type=float, default=0.05)
# Search Type
parser.add_argument('--search-type', default='classic_hemodynamic', choices=SEARCH_TYPES.keys())
parser.add_argument('--standardize-est-fmri', action='store_true')
parser.add_argument('--standardize-input-fmri', action='store_true')
parser.add_argument('--hemodynamic-response-window', type=float, default=30)
# savgol filter
parser.add_argument('--savgol-filter-window-length', type=int, default=5)
parser.add_argument('--savgol-filter-polyorder', type=int, default=5)
parser.add_argument('--deriv', type=int)
parser.add_argument('--delta', type=float)
# gaussian filter
parser.add_argument('--gaussian-filter-sigma', type=float, default=5)
parser.add_argument('--order', type=int)
parser.add_argument('--truncate', type=float)
parser.add_argument('--radius', type=int)
# shared by savgol and gaussian filters
parser.add_argument('--mode', type=str)
parser.add_argument('--cval', type=float)
########################################################################################################################
# Subparsers (for ROI or voxel analysis)
########################################################################################################################
subparsers = parser.add_subparsers(required=True)
mat_file_parser = subparsers.add_parser('roi')
mat_file_parser.add_argument('--mat-file', required=True,
help=f'ROI mat file path (must define X and subIndx as variables)', default=None)
mat_file_parser.add_argument('--sub-and-run-i', required=True, type=int,
help='subIndx value in mat-file for eeg par file', default=None)
nii_file_parser = subparsers.add_parser('nii')
nii_file_parser.add_argument('--nii-file', required=True, help=f'nii file path', default=None)
# If the runtime on an entire nii file is too large, load_from_nii provides a way of chopping up a large
# nii file into subsets. These arguments should be uncommented and search_script_writer will need to be updated
#nii_file_parser.add_argument('--job-number', default=None, type=int, help='Job number assigned by submit_from_config')
#nii_file_parser.add_argument('--number-of-tasks', default=None, type=int, help='Total number of tasks submitted by submit_from_config')
if __name__ == '__main__':
args = parser.parse_args()
# Load eeg data
eeg_data = np.fromfile(args.par_file, sep='\n')
eeg = EEGData(eeg_data, args.eeg_sample_frequency)
# Load fmri data
if getattr(args, 'mat_file', None):
fmri_voxel_data, fmri_voxel_names = load_roi_from_mat(args.mat_file, args.sub_and_run_i)
elif getattr(args, 'nii_file', None):
fmri_voxel_data, fmri_voxel_names = load_from_nii(args.nii_file)
# If the runtime on an entire nii file is too large, load_from_nii provides a way of chopping up a large
# nii file into subsets. This command can replace the one from above
#fmri_voxel_data, fmri_voxel_names = load_from_nii(args.nii_file, args.job_number, args.number_of_tasks)
else:
raise RuntimeError("Neither mat-file nor nii-file was provided. This code should be unreachable!")
if len(fmri_voxel_data.shape) == 1:
safe_to_be_computationally_expensive = 1 < args.max_voxels_safe_for_expensive_computation
else:
safe_to_be_computationally_expensive = fmri_voxel_data.shape[0] < args.max_voxels_safe_for_expensive_computation
if args.get_significance and not safe_to_be_computationally_expensive:
raise RuntimeError(f'Cannot calculate significance for {fmri_voxel_data.shape[0]} voxels. '
f'--max-voxels-safe-for-expensive-computation is set to '
f'{args.max_voxels_safe_for_expensive_computation}. '
f'Either increase --max-voxels-safe-for-expensive-computation or remove --get-significance')
if not os.path.exists(args.out_dir):
os.makedirs(args.out_dir)
delta_range = np.arange(args.delta_start, args.delta_end + args.delta_step, step=args.delta_step)
tau_range = np.arange(args.tau_start, args.tau_end + args.tau_step, step=args.tau_step)
alpha_range = np.arange(args.alpha_start, args.alpha_end + args.alpha_step, step=args.alpha_step)
search_kwargs = {kn: kv for kn, kv in vars(args).items() if kn in HEMODYNAMIC_MODEL_KEYS}
models = {f'{args.search_type}_{args.out_name}': SEARCH_TYPES[args.search_type]['model'](
eeg,
fMRIData(fmri_voxel_data, args.tr, fmri_voxel_names),
args.out_name,
args.num_trs_skipped_at_beginning,
display_plot=False,
**search_kwargs
)}
# Save plot of how the variables change relating to each other across the search space
save_plot(
os.path.join(args.out_dir, f'{args.out_name}_across_search_space'),
plot_eeg_hdr_across_delta_tau_alpha_range,
eeg,
args.hemodynamic_response_window,
args.tr,
delta_range,
tau_range,
alpha_range,
)
if safe_to_be_computationally_expensive:
# Allows plots for each voxel; won't close until all voxels are done; opens too many plots
# Create a model to plot actual fMRI vs estimated
model_for_plotting = SEARCH_TYPES[args.search_type]['model'](
eeg,
fMRIData(fmri_voxel_data, args.tr, fmri_voxel_names),
args.out_name,
args.num_trs_skipped_at_beginning,
display_plot=False,
save_plot_dir=args.out_dir,
**search_kwargs
)
model_for_plotting.set_plot_voxels(fmri_voxel_names)
model_for_plotting.score(PLOT_DELTA, PLOT_TAU, PLOT_ALPHA)
data, variable_names, indexers = search_voxels_in_depth_without_df(models, delta_range, tau_range, alpha_range,
args.verbose, args.get_significance)
for v_i, variable_name in enumerate(variable_names):
out_name = f'{variable_name}_search_on_' \
f'{os.path.basename(args.mat_file).split(".")[0]}_sub{args.sub_and_run_i}_{args.out_name}.mat'
if args.verbose:
print(f'Writing {variable_name} search to {out_name}')
scipy.io.savemat(
os.path.join(args.out_dir, out_name),
{variable_name: data.take(v_i, axis=(len(data.shape) - 1))}
)
for i, (indexer_name, indexer_values) in enumerate(indexers):
out_name = f'{i}_key_{indexer_name}_for_{os.path.basename(args.mat_file).split(".")[0]}' \
f'_sub{args.sub_and_run_i}_{args.out_name}.csv'
np.savetxt(os.path.join(args.out_dir, out_name), indexer_values, delimiter=",", fmt="%s")