-
-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathtrain.py
368 lines (322 loc) · 13.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# Copyright (C) 2019-2024, François-Guillaume Fernandez.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.
"""
Training script for semantic segmentation
"""
import datetime
import os
import time
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.utils.data
import wandb
from codecarbon import track_emissions
from torch.utils.data import RandomSampler, SequentialSampler
from torchvision import transforms as T
from torchvision.datasets import VOCSegmentation
from torchvision.models import segmentation as tv_segmentation
from torchvision.transforms.functional import InterpolationMode, to_pil_image
from transforms import Compose, ImageTransform, RandomCrop, RandomHorizontalFlip, RandomResize, Resize, ToTensor
import holocron
from holocron.models import segmentation
from holocron.trainer import SegmentationTrainer
from holocron.utils.misc import find_image_size
VOC_CLASSES = [
"background",
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"pottedplant",
"sheep",
"sofa",
"train",
"tvmonitor",
]
def worker_init_fn(worker_id: int) -> None:
np.random.default_rng((worker_id + torch.initial_seed()) % np.iinfo(np.int32).max)
def plot_samples(images, targets, ignore_index=None):
# Unnormalize image
nb_samples = 4
_, axes = plt.subplots(2, nb_samples, figsize=(20, 5))
for idx in range(nb_samples):
img = images[idx]
img *= torch.tensor([0.229, 0.224, 0.225]).view(-1, 1, 1)
img += torch.tensor([0.485, 0.456, 0.406]).view(-1, 1, 1)
img = to_pil_image(img)
target = targets[idx]
if isinstance(ignore_index, int):
target[target == ignore_index] = 0
axes[0][idx].imshow(img)
axes[0][idx].axis("off")
axes[0][idx].set_title("Input image")
axes[1][idx].imshow(target)
axes[1][idx].axis("off")
axes[1][idx].set_title("Target")
plt.show()
def plot_predictions(images, preds, targets, ignore_index=None):
# Unnormalize image
nb_samples = 4
_, axes = plt.subplots(3, nb_samples, figsize=(20, 5))
for idx in range(nb_samples):
img = images[idx]
img *= torch.tensor([0.229, 0.224, 0.225]).view(-1, 1, 1)
img += torch.tensor([0.485, 0.456, 0.406]).view(-1, 1, 1)
img = to_pil_image(img)
# Target
target = targets[idx]
if isinstance(ignore_index, int):
target[target == ignore_index] = 0
# Prediction
pred = preds[idx].detach().cpu().argmax(dim=0)
axes[0][idx].imshow(img)
axes[0][idx].axis("off")
axes[0][idx].set_title("Input image")
axes[1][idx].imshow(target)
axes[1][idx].axis("off")
axes[1][idx].set_title("Target")
axes[2][idx].imshow(pred)
axes[2][idx].axis("off")
axes[2][idx].set_title("Prediction")
plt.show()
@track_emissions()
def main(args):
print(args)
torch.backends.cudnn.benchmark = True
# Data loading
normalize = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
base_size = 320
crop_size = 256
min_size, max_size = int(0.5 * base_size), int(2.0 * base_size)
interpolation_mode = InterpolationMode.BILINEAR
train_loader, val_loader = None, None
if not args.test_only:
st = time.time()
train_set = VOCSegmentation(
args.data_path,
image_set="train",
download=True,
transforms=Compose([
RandomResize(min_size, max_size, interpolation_mode),
RandomCrop(crop_size),
RandomHorizontalFlip(0.5),
ImageTransform(T.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.1, hue=0.02)),
ToTensor(),
ImageTransform(normalize),
]),
)
# Suggest size
if args.find_size:
print("Looking for optimal image size")
find_image_size(train_set)
return
train_loader = torch.utils.data.DataLoader(
train_set,
batch_size=args.batch_size,
drop_last=True,
sampler=RandomSampler(train_set),
num_workers=args.workers,
pin_memory=True,
worker_init_fn=worker_init_fn,
)
print(
f"Training set loaded in {time.time() - st:.2f}s ({len(train_set)} samples in {len(train_loader)} batches)"
)
if args.show_samples:
x, target = next(iter(train_loader))
plot_samples(x, target, ignore_index=255)
return
if not (args.find_lr or args.check_setup):
st = time.time()
val_set = VOCSegmentation(
args.data_path,
image_set="val",
download=True,
transforms=Compose([
Resize((crop_size, crop_size), interpolation_mode),
ToTensor(),
ImageTransform(normalize),
]),
)
val_loader = torch.utils.data.DataLoader(
val_set,
batch_size=args.batch_size,
drop_last=False,
sampler=SequentialSampler(val_set),
num_workers=args.workers,
pin_memory=True,
worker_init_fn=worker_init_fn,
)
print(f"Validation set loaded in {time.time() - st:.2f}s ({len(val_set)} samples in {len(val_loader)} batches)")
if args.source.lower() == "holocron":
model = segmentation.__dict__[args.arch](args.pretrained, num_classes=len(VOC_CLASSES))
elif args.source.lower() == "torchvision":
model = tv_segmentation.__dict__[args.arch](args.pretrained, num_classes=len(VOC_CLASSES))
# Loss setup
loss_weight = None
if isinstance(args.bg_factor, float) and args.bg_factor != 1:
loss_weight = torch.ones(len(VOC_CLASSES))
loss_weight[0] = args.bg_factor
if args.loss == "crossentropy":
criterion = nn.CrossEntropyLoss(weight=loss_weight, ignore_index=255, label_smoothing=args.label_smoothing)
elif args.loss == "focal":
criterion = holocron.nn.FocalLoss(weight=loss_weight, ignore_index=255)
elif args.loss == "mc":
criterion = holocron.nn.MutualChannelLoss(weight=loss_weight, ignore_index=255, xi=3)
# Optimizer setup
model_params = [p for p in model.parameters() if p.requires_grad]
if args.opt == "sgd":
optimizer = torch.optim.SGD(model_params, args.lr, momentum=0.9, weight_decay=args.weight_decay)
elif args.opt == "radam":
optimizer = holocron.optim.RAdam(
model_params, args.lr, betas=(0.95, 0.99), eps=1e-6, weight_decay=args.weight_decay
)
elif args.opt == "adamp":
optimizer = holocron.optim.AdamP(
model_params, args.lr, betas=(0.95, 0.99), eps=1e-6, weight_decay=args.weight_decay
)
elif args.opt == "adabelief":
optimizer = holocron.optim.AdaBelief(
model_params, args.lr, betas=(0.95, 0.99), eps=1e-6, weight_decay=args.weight_decay
)
log_wb = lambda metrics: wandb.log(metrics) if args.wb else None
trainer = SegmentationTrainer(
model,
train_loader,
val_loader,
criterion,
optimizer,
args.device,
args.output_file,
num_classes=len(VOC_CLASSES),
gradient_acc=args.grad_acc,
amp=args.amp,
on_epoch_end=log_wb,
)
if args.resume:
print(f"Resuming {args.resume}")
checkpoint = torch.load(args.resume, map_location="cpu")
trainer.load(checkpoint)
if args.show_preds:
x, target = next(iter(train_loader))
with torch.no_grad():
if isinstance(args.device, int):
x = x.cuda()
trainer.model.eval()
preds = trainer.model(x)
plot_predictions(x.cpu(), preds.cpu(), target, ignore_index=255)
return
if args.test_only:
print("Running evaluation")
eval_metrics = trainer.evaluate()
print(trainer._eval_metrics_str(eval_metrics))
return
if args.find_lr:
print("Looking for optimal LR")
trainer.find_lr(args.freeze_until, norm_weight_decay=args.norm_weight_decay, num_it=min(len(train_loader), 100))
trainer.plot_recorder()
return
if args.check_setup:
print("Checking batch overfitting")
trainer.check_setup(
args.freeze_until, args.lr, norm_weight_decay=args.norm_weight_decay, num_it=min(len(train_loader), 100)
)
return
# Training monitoring
current_time = datetime.datetime.now(tz=datetime.timezone.utc).strftime("%Y%m%d-%H%M%S")
exp_name = f"{args.arch}-{current_time}" if args.name is None else args.name
# W&B
if args.wb:
run = wandb.init(
name=exp_name,
project="holocron-semantic-segmentation",
config={
"learning_rate": args.lr,
"scheduler": args.sched,
"weight_decay": args.weight_decay,
"epochs": args.epochs,
"batch_size": args.batch_size,
"architecture": args.arch,
"source": args.source,
"input_size": 256,
"optimizer": args.opt,
"dataset": "Pascal VOC2012 Segmentation",
"loss": args.loss,
},
)
print("Start training")
start_time = time.time()
trainer.fit_n_epochs(args.epochs, args.lr, args.freeze_until, args.sched, norm_weight_decay=args.norm_weight_decay)
total_time_str = str(datetime.timedelta(seconds=int(time.time() - start_time)))
print(f"Training time {total_time_str}")
if args.wb:
run.finish()
def get_parser():
import argparse
parser = argparse.ArgumentParser(
description="Holocron Segmentation Training", formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
# Data & model
group = parser.add_argument_group("Data & model")
group.add_argument("data_path", type=str, help="path to dataset folder")
group.add_argument("--arch", default="yolov2", type=str, help="architecture to use")
group.add_argument("--source", type=str, default="holocron", help="where should the architecture be taken from")
group.add_argument("--pretrained", action="store_true", help="Use pre-trained models from the modelzoo")
group.add_argument("--output-file", default="./checkpoints/model.pth", help="path where to save")
group.add_argument("--resume", default="", help="resume from checkpoint")
# Hardware
group = parser.add_argument_group("Hardware")
group.add_argument("--device", default=None, type=int, help="device")
group.add_argument("--amp", help="Use Automatic Mixed Precision", action="store_true")
# Data loading
group = parser.add_argument_group("Data loading")
group.add_argument("-b", "--batch-size", default=32, type=int, help="batch size")
group.add_argument(
"-j", "--workers", default=min(os.cpu_count(), 16), type=int, help="number of data loading workers"
)
# Transformations
group = parser.add_argument_group("Transformations")
group.add_argument("--img-size", default=416, type=int, help="image size")
# Optimization
group = parser.add_argument_group("Optimization")
group.add_argument("--epochs", default=20, type=int, help="number of total epochs to run")
group.add_argument("--lr", default=0.1, type=float, help="initial learning rate")
group.add_argument("--freeze-until", default=None, type=str, help="Last layer to freeze")
group.add_argument("--grad-acc", default=1, type=int, help="Number of batches to accumulate the gradient of")
group.add_argument("--opt", default="adamp", type=str, help="optimizer")
group.add_argument("--loss", default="crossentropy", type=str, help="loss")
group.add_argument("--bg-factor", default=1, type=float, help="Class weight of background in the loss")
group.add_argument("--sched", default="onecycle", type=str, help="Scheduler to be used")
group.add_argument("--wd", "--weight-decay", default=0, type=float, help="weight decay", dest="weight_decay")
group.add_argument("--norm-wd", default=None, type=float, help="weight decay of norm parameters")
group.add_argument("--label-smoothing", default=0.1, type=float, help="label smoothing")
# Actions
group = parser.add_argument_group("Actions")
group.add_argument("--find-lr", action="store_true", help="Should you run LR Finder")
group.add_argument("--find-size", dest="find_size", action="store_true", help="Should you run Image size Finder")
group.add_argument("--check-setup", action="store_true", help="Check your training setup")
group.add_argument("--show-samples", action="store_true", help="Whether training samples should be displayed")
group.add_argument("--test-only", help="Only test the model", action="store_true")
group.add_argument("--show-preds", action="store_true", help="Whether one batch predictions should be displayed")
# Experiment tracking
group = parser.add_argument_group("Experiment tracking")
group.add_argument("--wb", action="store_true", help="Log to Weights & Biases")
group.add_argument("--name", type=str, default=None, help="Name of your training experiment")
return parser
if __name__ == "__main__":
args = get_parser().parse_args()
main(args)