forked from hunkim/DeepLearningZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lab-04-4-tf_reader_linear_regression.py
69 lines (52 loc) · 2.04 KB
/
lab-04-4-tf_reader_linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Lab 4 Multi-variable linear regression
# https://www.tensorflow.org/programmers_guide/reading_data
import tensorflow as tf
tf.set_random_seed(777) # for reproducibility
filename_queue = tf.train.string_input_producer(
['data-01-test-score.csv'], shuffle=False, name='filename_queue')
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
# Default values, in case of empty columns. Also specifies the type of the
# decoded result.
record_defaults = [[0.], [0.], [0.], [0.]]
xy = tf.decode_csv(value, record_defaults=record_defaults)
# collect batches of csv in
train_x_batch, train_y_batch = \
tf.train.batch([xy[0:-1], xy[-1:]], batch_size=10)
# placeholders for a tensor that will be always fed.
X = tf.placeholder(tf.float32, shape=[None, 3])
Y = tf.placeholder(tf.float32, shape=[None, 1])
W = tf.Variable(tf.random_normal([3, 1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
# Hypothesis
hypothesis = tf.matmul(X, W) + b
# Simplified cost/loss function
cost = tf.reduce_mean(tf.square(hypothesis - Y))
# Minimize
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-5)
train = optimizer.minimize(cost)
# Launch the graph in a session.
sess = tf.Session()
# Initializes global variables in the graph.
sess.run(tf.global_variables_initializer())
# Start populating the filename queue.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
for step in range(2001):
x_batch, y_batch = sess.run([train_x_batch, train_y_batch])
cost_val, hy_val, _ = sess.run(
[cost, hypothesis, train], feed_dict={X: x_batch, Y: y_batch})
if step % 10 == 0:
print(step, "Cost: ", cost_val, "\nPrediction:\n", hy_val)
coord.request_stop()
coord.join(threads)
# Ask my score
print("Your score will be ",
sess.run(hypothesis, feed_dict={X: [[100, 70, 101]]}))
print("Other scores will be ",
sess.run(hypothesis, feed_dict={X: [[60, 70, 110], [90, 100, 80]]}))
'''
Your score will be [[185.33531]]
Other scores will be [[178.36246]
[177.03687]]
'''