Skip to content

Commit fdde777

Browse files
authored
Removing Span Metric recommendations / Example cleanup (#13275)
* Removing extra guidance language for metrics * Removing redundant metrics in examples. * Removing span metrics suggestions from python * lower casing the docs * removing incorrectly committed llm files
1 parent a785471 commit fdde777

File tree

3 files changed

+0
-93
lines changed

3 files changed

+0
-93
lines changed

Diff for: docs/platforms/javascript/common/tracing/span-metrics/examples.mdx

-6
Original file line numberDiff line numberDiff line change
@@ -257,11 +257,6 @@ Sentry.startSpan(
257257
"ui.form_completion_time_ms": 45000,
258258
"ui.payment_method_changes": 1,
259259
"ui.address_validation_retries": 0,
260-
261-
// Client performance
262-
"client.page_load_time_ms": 850,
263-
"client.payment_widget_load_ms": 650,
264-
"client.total_interaction_time_ms": 120000,
265260
},
266261
},
267262
async () => {
@@ -291,7 +286,6 @@ Sentry.startSpan(
291286
"payment.processing_time_ms": 1200,
292287

293288
// Inventory checks
294-
"inventory.check_time_ms": 150,
295289
"inventory.all_available": true,
296290

297291
// Fulfillment

Diff for: docs/platforms/javascript/common/tracing/span-metrics/index.mdx

-46
Original file line numberDiff line numberDiff line change
@@ -86,52 +86,6 @@ Sentry.init({
8686
});
8787
```
8888

89-
## Best Practices for Span Metrics
90-
91-
1. **Metric Naming**
92-
93-
- Use clear, consistent naming patterns
94-
- Include the metric category (examples: `db`, `cache`, `http`)
95-
- Use snake_case for metric names
96-
97-
2. **Data Types**
98-
99-
- Use appropriate numeric types for measurements
100-
- Use booleans for status flags
101-
- Use strings for categorical data
102-
- Use arrays when grouping related values
103-
104-
3. **Performance Considerations**
105-
106-
- Consider the overhead of metric collection
107-
- Use sampling when collecting high-frequency metrics
108-
- Balance metric granularity with system performance
109-
110-
4. **Debugging and Monitoring**
111-
- Include correlation IDs for related operations
112-
- Add context that helps with troubleshooting
113-
114-
## Best Practices for Implementation
115-
116-
When implementing span metrics in your application:
117-
118-
1. **Start Small and Iterate**
119-
120-
- Begin with basic metrics that directly relate to your debugging or performance monitoring needs
121-
- Add more detailed tracking as specific debugging needs emerge
122-
- Remove metrics that aren't providing actionable insights
123-
124-
2. **Maintain Consistency**
125-
126-
- Use consistent naming patterns across your application
127-
- Document metric meanings and units in your codebase
128-
- Share common metrics across similar operations
129-
130-
3. **Focus on Actionability**
131-
- Track metrics that help diagnose specific issues
132-
- Consider what alerts or dashboard visualizations you'll want to create
133-
- Ensure metrics can drive issue resolution or decision making
134-
13589
For detailed examples of how to implement span metrics in common scenarios, see our <PlatformLink to="/tracing/span-metrics/examples/">Span Metrics Examples</PlatformLink> guide.
13690

13791
## Span Metrics vs. Measurements

Diff for: docs/platforms/python/tracing/span-metrics/index.mdx

-41
Original file line numberDiff line numberDiff line change
@@ -99,45 +99,4 @@ sentry_sdk.init(
9999
)
100100
```
101101

102-
## Best Practices for Span Metrics
103-
104-
1. **Metric Naming**
105-
- Use clear, consistent naming patterns
106-
- Include the metric category (examples: `db`, `cache`, `http`)
107-
- Use snake_case for metric names
108-
109-
2. **Data Types**
110-
- Use appropriate numeric types for measurements
111-
- Use booleans for status flags
112-
- Use strings for categorical data
113-
- Use arrays when grouping related values
114-
115-
3. **Performance Considerations**
116-
- Consider the overhead of metric collection
117-
- Use sampling when collecting high-frequency metrics
118-
- Balance metric granularity with system performance
119-
120-
4. **Debugging and Monitoring**
121-
- Include correlation IDs for related operations
122-
- Add context that helps with troubleshooting
123-
124-
## Best Practices for Implementation
125-
126-
When implementing span metrics in your application:
127-
128-
1. **Start Small and Iterate**
129-
- Begin with basic metrics that directly relate to your debugging or performance monitoring needs
130-
- Add more detailed tracking as specific debugging needs emerge
131-
- Remove metrics that aren't providing actionable insights
132-
133-
2. **Maintain Consistency**
134-
- Use consistent naming patterns across your application
135-
- Document metric meanings and units in your codebase
136-
- Share common metrics across similar operations
137-
138-
3. **Focus on Actionability**
139-
- Track metrics that help diagnose specific issues
140-
- Consider what alerts or dashboard visualizations you'll want to create
141-
- Ensure metrics can drive issue resolution or decision making
142-
143102
For detailed examples of how to implement span metrics in common scenarios, see our <PlatformLink to="/tracing/span-metrics/examples/">Span Metrics Examples</PlatformLink> guide.

0 commit comments

Comments
 (0)