Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Eval bug: phi 4 - input is empty #11157

Closed
mirek190 opened this issue Jan 9, 2025 · 1 comment · Fixed by #11214
Closed

Eval bug: phi 4 - input is empty #11157

mirek190 opened this issue Jan 9, 2025 · 1 comment · Fixed by #11214

Comments

@mirek190
Copy link

mirek190 commented Jan 9, 2025

Name and Version

build: 4451 (d9feae1) with MSVC 19.29.30157.0 for

Operating systems

Windows

GGML backends

CUDA

Hardware

Ryzen 7950x3d + RTX 3090

Models

phi 4

Problem description & steps to reproduce

phi 4 - input is empty

Just load model

First Bad Commit

No response

Relevant log output

llama-cli.exe --model models/new3/phi-4-Q8_0.gguf --color --threads 30 --keep -1 --n-predict -1 --ctx-size 16384 --interactive -ngl 99 --simple-io -e --multiline-input --no-display-prompt --conversation --no-mmap
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
build: 4451 (d9feae1c) with MSVC 19.29.30157.0 for
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_load_from_file: using device CUDA0 (NVIDIA GeForce RTX 3090) - 23306 MiB free
llama_model_loader: loaded meta data with 37 key-value pairs and 243 tensors from models/new3/phi-4-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = phi3
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Phi 4
llama_model_loader: - kv   3:                            general.version str              = 4
llama_model_loader: - kv   4:                       general.organization str              = Microsoft
llama_model_loader: - kv   5:                           general.basename str              = phi
llama_model_loader: - kv   6:                         general.size_label str              = 15B
llama_model_loader: - kv   7:                            general.license str              = mit
llama_model_loader: - kv   8:                       general.license.link str              = https://huggingface.co/microsoft/phi-...
llama_model_loader: - kv   9:                               general.tags arr[str,7]       = ["phi", "nlp", "math", "code", "chat"...
llama_model_loader: - kv  10:                          general.languages arr[str,1]       = ["en"]
llama_model_loader: - kv  11:                        phi3.context_length u32              = 16384
llama_model_loader: - kv  12:  phi3.rope.scaling.original_context_length u32              = 16384
llama_model_loader: - kv  13:                      phi3.embedding_length u32              = 5120
llama_model_loader: - kv  14:                   phi3.feed_forward_length u32              = 17920
llama_model_loader: - kv  15:                           phi3.block_count u32              = 40
llama_model_loader: - kv  16:                  phi3.attention.head_count u32              = 40
llama_model_loader: - kv  17:               phi3.attention.head_count_kv u32              = 10
llama_model_loader: - kv  18:      phi3.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  19:                  phi3.rope.dimension_count u32              = 128
llama_model_loader: - kv  20:                        phi3.rope.freq_base f32              = 250000.000000
llama_model_loader: - kv  21:                          general.file_type u32              = 7
llama_model_loader: - kv  22:              phi3.attention.sliding_window u32              = 0
llama_model_loader: - kv  23:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  24:                         tokenizer.ggml.pre str              = dbrx
llama_model_loader: - kv  25:                      tokenizer.ggml.tokens arr[str,100352]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  26:                  tokenizer.ggml.token_type arr[i32,100352]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  27:                      tokenizer.ggml.merges arr[str,100000]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  28:                tokenizer.ggml.bos_token_id u32              = 100257
llama_model_loader: - kv  29:                tokenizer.ggml.eos_token_id u32              = 100257
llama_model_loader: - kv  30:            tokenizer.ggml.padding_token_id u32              = 100257
llama_model_loader: - kv  31:                    tokenizer.chat_template str              = {% for message in messages %}{% if (m...
llama_model_loader: - kv  32:               general.quantization_version u32              = 2
llama_model_loader: - kv  33:                      quantize.imatrix.file str              = /models_out/phi-4-GGUF/phi-4.imatrix
llama_model_loader: - kv  34:                   quantize.imatrix.dataset str              = /training_dir/calibration_datav3.txt
llama_model_loader: - kv  35:             quantize.imatrix.entries_count i32              = 160
llama_model_loader: - kv  36:              quantize.imatrix.chunks_count i32              = 127
llama_model_loader: - type  f32:   81 tensors
llama_model_loader: - type q8_0:  162 tensors
llm_load_vocab: special tokens cache size = 96
llm_load_vocab: token to piece cache size = 0.6151 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = phi3
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 100352
llm_load_print_meta: n_merges         = 100000
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 16384
llm_load_print_meta: n_embd           = 5120
llm_load_print_meta: n_layer          = 40
llm_load_print_meta: n_head           = 40
llm_load_print_meta: n_head_kv        = 10
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: n_embd_k_gqa     = 1280
llm_load_print_meta: n_embd_v_gqa     = 1280
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 17920
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 2
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 250000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 16384
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 14B
llm_load_print_meta: model ftype      = Q8_0
llm_load_print_meta: model params     = 14.66 B
llm_load_print_meta: model size       = 14.51 GiB (8.50 BPW)
llm_load_print_meta: general.name     = Phi 4
llm_load_print_meta: BOS token        = 100257 '<|endoftext|>'
llm_load_print_meta: EOS token        = 100257 '<|endoftext|>'
llm_load_print_meta: EOT token        = 100265 '<|im_end|>'
llm_load_print_meta: PAD token        = 100257 '<|endoftext|>'
llm_load_print_meta: LF token         = 128 'Ä'
llm_load_print_meta: FIM PRE token    = 100258 '<|fim_prefix|>'
llm_load_print_meta: FIM SUF token    = 100260 '<|fim_suffix|>'
llm_load_print_meta: FIM MID token    = 100259 '<|fim_middle|>'
llm_load_print_meta: EOG token        = 100257 '<|endoftext|>'
llm_load_print_meta: EOG token        = 100265 '<|im_end|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: offloading 40 repeating layers to GPU
llm_load_tensors: offloading output layer to GPU
llm_load_tensors: offloaded 41/41 layers to GPU
llm_load_tensors:    CUDA_Host model buffer size =   520.62 MiB
llm_load_tensors:        CUDA0 model buffer size = 14334.71 MiB
.....................................................................................
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 16384
llama_new_context_with_model: n_ctx_per_seq = 16384
llama_new_context_with_model: n_batch       = 2048
llama_new_context_with_model: n_ubatch      = 512
llama_new_context_with_model: flash_attn    = 0
llama_new_context_with_model: freq_base     = 250000.0
llama_new_context_with_model: freq_scale    = 1
llama_kv_cache_init: kv_size = 16384, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 40, can_shift = 1
llama_kv_cache_init:      CUDA0 KV buffer size =  3200.00 MiB
llama_new_context_with_model: KV self size  = 3200.00 MiB, K (f16): 1600.00 MiB, V (f16): 1600.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.38 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =  1357.00 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =    42.01 MiB
llama_new_context_with_model: graph nodes  = 1606
llama_new_context_with_model: graph splits = 2
common_init_from_params: setting dry_penalty_last_n to ctx_size = 16384
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 30
main: chat template example:
<|im_start|>system<|im_sep|>You are a helpful assistant<|im_end|><|im_start|>user<|im_sep|>Hello<|im_end|><|im_start|>assistant<|im_sep|>Hi there<|im_end|><|im_start|>user<|im_sep|>How are you?<|im_end|><|im_start|>assistant<|im_sep|>

system_info: n_threads = 30 (n_threads_batch = 30) / 32 | CUDA : ARCHS = 520,610,700,750 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |

input is empty
@ngxson
Copy link
Collaborator

ngxson commented Jan 9, 2025

You need to add system message: -p "You are a helpful assistant"

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants