8
8
#define LLAMA_MAX_LAYERS 512
9
9
#define LLAMA_MAX_EXPERTS 256 // DeepSeekV3
10
10
11
- enum llama_expert_gating_func_type {
12
- LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0 ,
13
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX = 1 ,
14
- LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2 ,
15
- };
16
-
17
- enum llama_swa_type {
18
- LLAMA_SWA_TYPE_NONE = 0 ,
19
- LLAMA_SWA_TYPE_STANDARD = 1 ,
20
- LLAMA_SWA_TYPE_CHUNKED = 2 ,
21
- };
22
-
11
+ // Internal helper structs if they are not part of the public API
12
+ // and are used by files including src/llama-hparams.h
13
+ // If these are actually part of the public llama_hparams, they should be in include/llama.h
14
+ // For now, assuming they might be used by other src files that include this.
23
15
struct llama_hparams_posnet {
24
16
uint32_t n_embd;
25
17
uint32_t n_layer;
@@ -30,161 +22,7 @@ struct llama_hparams_convnext {
30
22
uint32_t n_layer;
31
23
};
32
24
33
- struct llama_hparams {
34
- bool vocab_only;
35
- bool rope_finetuned;
36
- bool use_par_res;
37
- bool swin_norm;
38
-
39
- uint32_t n_ctx_train; // context size the model was trained on
40
- uint32_t n_embd;
41
- uint32_t n_embd_features = 0 ;
42
- uint32_t n_layer;
43
- uint32_t n_rot;
44
- uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
45
- uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
46
- uint32_t n_expert = 0 ;
47
- uint32_t n_expert_used = 0 ;
48
- uint32_t n_rel_attn_bkts = 0 ;
49
-
50
- // note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
51
- uint32_t n_embd_head_k_mla = 0 ;
52
- uint32_t n_embd_head_v_mla = 0 ;
53
-
54
- // for WavTokenizer
55
- struct llama_hparams_posnet posnet;
56
- struct llama_hparams_convnext convnext;
57
-
58
- std::array<uint32_t , LLAMA_MAX_LAYERS> n_head_arr;
59
- std::array<uint32_t , LLAMA_MAX_LAYERS> n_head_kv_arr;
60
- std::array<uint32_t , LLAMA_MAX_LAYERS> n_ff_arr;
61
-
62
- uint32_t n_layer_dense_lead = 0 ;
63
- uint32_t n_lora_q = 0 ;
64
- uint32_t n_lora_kv = 0 ;
65
- uint32_t n_ff_exp = 0 ;
66
- uint32_t n_ff_shexp = 0 ;
67
- uint32_t n_expert_shared = 0 ;
68
- uint32_t n_norm_groups = 0 ;
69
-
70
- float expert_weights_scale = 0.0 ;
71
- bool expert_weights_norm = false ;
72
- uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE;
73
- uint32_t moe_every_n_layers = 0 ;
74
-
75
- float f_norm_eps;
76
- float f_norm_rms_eps;
77
- float f_norm_group_eps;
78
-
79
- float f_attn_logit_softcapping = 50 .0f ;
80
- float f_final_logit_softcapping = 30 .0f ;
81
-
82
- // for RWKV
83
- uint32_t rescale_every_n_layers = 0 ;
84
- uint32_t time_mix_extra_dim = 0 ;
85
- uint32_t time_decay_extra_dim = 0 ;
86
- uint32_t wkv_head_size = 0 ;
87
- uint32_t token_shift_count = 2 ;
88
- uint32_t n_lora_decay = 0 ;
89
- uint32_t n_lora_iclr = 0 ;
90
- uint32_t n_lora_value_res_mix = 0 ;
91
- uint32_t n_lora_gate = 0 ;
92
-
93
- float rope_attn_factor = 1 .0f ;
94
- float rope_freq_base_train;
95
- float rope_freq_base_train_swa;
96
- float rope_freq_scale_train;
97
- float rope_freq_scale_train_swa;
98
- uint32_t n_ctx_orig_yarn;
99
- float rope_yarn_log_mul;
100
-
101
- std::array<int , 4 > rope_sections;
102
-
103
- // Sliding Window Attention (SWA)
104
- llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
105
- // the size of the sliding window (0 - no SWA)
106
- uint32_t n_swa = 0 ;
107
- // if swa_layers[il] == true, then layer il is SWA
108
- // if swa_layers[il] == false, then layer il is dense (i.e. non-SWA)
109
- // by default, all layers are dense
110
- std::array<bool , LLAMA_MAX_LAYERS> swa_layers;
111
-
112
- // for State Space Models
113
- uint32_t ssm_d_conv = 0 ;
114
- uint32_t ssm_d_inner = 0 ;
115
- uint32_t ssm_d_state = 0 ;
116
- uint32_t ssm_dt_rank = 0 ;
117
-
118
- bool ssm_dt_b_c_rms = false ;
119
-
120
- float f_clamp_kqv = 0 .0f ;
121
- float f_max_alibi_bias = 0 .0f ;
122
- float f_logit_scale = 0 .0f ;
123
-
124
- // Additional scale factors (Granite/Granite MoE)
125
- float f_residual_scale = 0 .0f ;
126
- float f_embedding_scale = 0 .0f ;
127
- float f_attention_scale = 0 .0f ;
128
-
129
- bool causal_attn = true ;
130
- bool use_alibi = false ;
131
- bool attn_soft_cap = false ;
132
- bool use_kq_norm = true ;
133
-
134
- // llama4
135
- uint32_t n_moe_layer_step = 0 ;
136
- uint32_t n_no_rope_layer_step = 4 ;
137
- uint32_t n_attn_temp_floor_scale = 8192 ;
138
- float f_attn_temp_scale = 0.1 ;
139
-
140
- // needed by encoder-decoder models (e.g. T5, FLAN-T5)
141
- // ref: https://github.com/ggerganov/llama.cpp/pull/8141
142
- llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
143
-
144
- enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
145
- enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
146
- enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
147
-
148
- // this value n_pattern means that every nth layer is dense (i.e. non-SWA)
149
- // note that if n_pattern == 0, all layers are SWA
150
- // if n_pattern == 1, all layers are dense
151
- // example: n_pattern = 3
152
- // il == 0: swa
153
- // il == 1: swa
154
- // il == 2: dense
155
- // il == 3: swa
156
- // il == 4: swa
157
- // il == 5: dense
158
- // il == 6: swa
159
- // etc ...
160
- void set_swa_pattern (uint32_t n_pattern);
161
-
162
- // return true if one of the layers is SWA
163
- bool is_swa_any () const ;
164
-
165
- uint32_t n_head (uint32_t il = 0 ) const ;
166
-
167
- uint32_t n_head_kv (uint32_t il = 0 ) const ;
168
-
169
- uint32_t n_ff (uint32_t il = 0 ) const ;
170
-
171
- uint32_t n_gqa (uint32_t il = 0 ) const ;
172
-
173
- // dimension of key embeddings across all k-v heads
174
- uint32_t n_embd_k_gqa (uint32_t il = 0 ) const ;
175
-
176
- // dimension of value embeddings across all k-v heads
177
- uint32_t n_embd_v_gqa (uint32_t il = 0 ) const ;
178
-
179
- // dimension of the rolling state embeddings
180
- // corresponds to Mamba's conv_states size or RWKV's token_shift states size
181
- uint32_t n_embd_k_s () const ;
182
-
183
- // dimension of the recurrent state embeddings
184
- uint32_t n_embd_v_s () const ;
185
-
186
- bool is_swa (uint32_t il) const ;
187
- };
188
-
189
- static_assert (std::is_trivially_copyable<llama_hparams>::value, " llama_hparams must be trivially copyable" );
190
-
25
+ // All other definitions previously in this file (LLAMA_MAX_LAYERS,
26
+ // enum llama_expert_gating_func_type, enum llama_swa_type,
27
+ // struct llama_hparams, and the static_assert) are removed
28
+ // to defer to the definitions in "llama.h".
0 commit comments