Skip to content

Eval bug: Output garbled in dual-GPU environment  #13673

Closed
@zt1024

Description

@zt1024

Name and Version

b4742

Operating systems

Linux

GGML backends

HIP, CPU

Hardware

Atlas 300I Duo
Software Version : 24.1.rc2
Firmware Version : 7.3.0.1.231
toolkit : 8.0.0

Models

DeepSeek-R1-Distill-Qwen-14B_F16.gguf

Problem description & steps to reproduce

./llama-server -m /DeepSeek-R1-Distill-Qwen-14B.gguf -e -ngl 33 -sm layer

i hava tried --main-gpu ,but problem still persists.

Output garbled in dual-GPU environment

First Bad Commit

No response

Relevant log output

bash-5.2# ./llama-server -m  ../../../DeepSeek-R1-Distill-Qwen-14B.gguf  -e -ngl 33 -sm layer
build: 0 (unknown) with cc (NGTOS-2.6.2210) 9.5.0 for aarch64-native_tos-linux-gnu
system info: n_threads = 96, n_threads_batch = 96, total_threads = 96

system_info: n_threads = 96 (n_threads_batch = 96) / 96 | CPU : NEON = 1 | ARM_FMA = 1 | FP16_VA = 1 | DOTPROD = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |

main: HTTP server is listening, hostname: 127.0.0.1, port: 8080, http threads: 95
main: loading model
srv    load_model: loading model '../../../DeepSeek-R1-Distill-Qwen-14B.gguf'
llama_model_load_from_file_impl: using device CANN0 (Ascend310P3) - 20650 MiB free
llama_model_load_from_file_impl: using device CANN1 (Ascend310P3) - 20111 MiB free
llama_model_load_from_file_impl: using device CANN2 (Ascend310P3) - 20439 MiB free
llama_model_load_from_file_impl: using device CANN3 (Ascend310P3) - 20318 MiB free
llama_model_loader: loaded meta data with 27 key-value pairs and 579 tensors from ../../../DeepSeek-R1-Distill-Qwen-14B.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = DeepSeek R1 Distill Qwen 14B
llama_model_loader: - kv   3:                           general.basename str              = DeepSeek-R1-Distill-Qwen
llama_model_loader: - kv   4:                         general.size_label str              = 14B
llama_model_loader: - kv   5:                            general.license str              = mit
llama_model_loader: - kv   6:                          qwen2.block_count u32              = 48
llama_model_loader: - kv   7:                       qwen2.context_length u32              = 131072
llama_model_loader: - kv   8:                     qwen2.embedding_length u32              = 5120
llama_model_loader: - kv   9:                  qwen2.feed_forward_length u32              = 13824
llama_model_loader: - kv  10:                 qwen2.attention.head_count u32              = 40
llama_model_loader: - kv  11:              qwen2.attention.head_count_kv u32              = 8
llama_model_loader: - kv  12:                       qwen2.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  13:     qwen2.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  14:                          general.file_type u32              = 1
llama_model_loader: - kv  15:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  16:                         tokenizer.ggml.pre str              = deepseek-r1-qwen
llama_model_loader: - kv  17:                      tokenizer.ggml.tokens arr[str,152064]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  18:                  tokenizer.ggml.token_type arr[i32,152064]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  19:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  20:                tokenizer.ggml.bos_token_id u32              = 151646
llama_model_loader: - kv  21:                tokenizer.ggml.eos_token_id u32              = 151643
llama_model_loader: - kv  22:            tokenizer.ggml.padding_token_id u32              = 151643
llama_model_loader: - kv  23:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  24:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  25:                    tokenizer.chat_template str              = {% if not add_generation_prompt is de...
llama_model_loader: - kv  26:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:  241 tensors
llama_model_loader: - type  f16:  338 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = F16
print_info: file size   = 27.51 GiB (16.00 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 22
load: token to piece cache size = 0.9310 MB
print_info: arch             = qwen2
print_info: vocab_only       = 0
print_info: n_ctx_train      = 131072
print_info: n_embd           = 5120
print_info: n_layer          = 48
print_info: n_head           = 40
print_info: n_head_kv        = 8
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 5
print_info: n_embd_k_gqa     = 1024
print_info: n_embd_v_gqa     = 1024
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-05
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: n_ff             = 13824
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 2
print_info: rope scaling     = linear
print_info: freq_base_train  = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 131072
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 14B
print_info: model params     = 14.77 B
print_info: general.name     = DeepSeek R1 Distill Qwen 14B
print_info: vocab type       = BPE
print_info: n_vocab          = 152064
print_info: n_merges         = 151387
print_info: BOS token        = 151646 '<|begin▁of▁sentence|>'
print_info: EOS token        = 151643 '<|end▁of▁sentence|>'
print_info: EOT token        = 151643 '<|end▁of▁sentence|>'
print_info: PAD token        = 151643 '<|end▁of▁sentence|>'
print_info: LF token         = 198 'Ċ'
print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
print_info: FIM MID token    = 151660 '<|fim_middle|>'
print_info: FIM PAD token    = 151662 '<|fim_pad|>'
print_info: FIM REP token    = 151663 '<|repo_name|>'
print_info: FIM SEP token    = 151664 '<|file_sep|>'
print_info: EOG token        = 151643 '<|end▁of▁sentence|>'
print_info: EOG token        = 151662 '<|fim_pad|>'
print_info: EOG token        = 151663 '<|repo_name|>'
print_info: EOG token        = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 33 repeating layers to GPU
load_tensors: offloaded 33/49 layers to GPU
load_tensors:   CPU_Mapped model buffer size = 28173.21 MiB
load_tensors:        CANN0 model buffer size =  4725.60 MiB
load_tensors:        CANN1 model buffer size =  4200.53 MiB
load_tensors:        CANN2 model buffer size =  4200.53 MiB
load_tensors:        CANN3 model buffer size =  4200.53 MiB
............................................................................................
llama_init_from_model: n_seq_max     = 1
llama_init_from_model: n_ctx         = 4096
llama_init_from_model: n_ctx_per_seq = 4096
llama_init_from_model: n_batch       = 2048
llama_init_from_model: n_ubatch      = 512
llama_init_from_model: flash_attn    = 0
llama_init_from_model: freq_base     = 1000000.0
llama_init_from_model: freq_scale    = 1
llama_init_from_model: n_ctx_per_seq (4096) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 4096, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 48, can_shift = 1
llama_kv_cache_init:        CPU KV buffer size =   240.00 MiB
llama_kv_cache_init:      CANN0 KV buffer size =   144.00 MiB
llama_kv_cache_init:      CANN1 KV buffer size =   128.00 MiB
llama_kv_cache_init:      CANN2 KV buffer size =   128.00 MiB
llama_kv_cache_init:      CANN3 KV buffer size =   128.00 MiB
llama_init_from_model: KV self size  =  768.00 MiB, K (f16):  384.00 MiB, V (f16):  384.00 MiB
llama_init_from_model:        CPU  output buffer size =     0.58 MiB
llama_init_from_model:      CANN0 compute buffer size =  1792.00 MiB
llama_init_from_model:      CANN1 compute buffer size =   368.00 MiB
llama_init_from_model:      CANN2 compute buffer size =   368.00 MiB
llama_init_from_model:      CANN3 compute buffer size =   368.00 MiB
llama_init_from_model:  CANN_Host compute buffer size =    18.01 MiB
llama_init_from_model: graph nodes  = 1686
llama_init_from_model: graph splits = 217 (with bs=512), 6 (with bs=1)
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv          init: initializing slots, n_slots = 1
slot         init: id  0 | task -1 | new slot n_ctx_slot = 4096
main: model loaded
main: chat template, chat_template: {% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '' + '\n' + tool['function']['arguments'] + '\n' + '' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '' + '\n' + tool['function']['arguments'] + '\n' + '' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}, example_format: 'You are a helpful assistant

<|User|>Hello<|Assistant|>Hi there<|end▁of▁sentence|><|User|>How are you?<|Assistant|>'
main: server is listening on http://127.0.0.1:8080 - starting the main loop
srv  update_slots: all slots are idle
srv  params_from_: Chat format: Content-only
slot launch_slot_: id  0 | task 0 | processing task
slot update_slots: id  0 | task 0 | new prompt, n_ctx_slot = 4096, n_keep = 0, n_prompt_tokens = 10
slot update_slots: id  0 | task 0 | kv cache rm [0, end)
slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 10, n_tokens = 10, progress = 1.000000
slot update_slots: id  0 | task 0 | prompt done, n_past = 10, n_tokens = 10

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions