Closed
Description
Name and Version
./build/bin/llama-finetune --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 CUDA devices:
Device 0: NVIDIA H100 NVL, compute capability 9.0, VMM: yes
Device 1: NVIDIA H100 NVL, compute capability 9.0, VMM: yes
version: 5754 (2bf9d539)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
Operating systems
Linux
GGML backends
CPU
Hardware
some_user@some_hardware:~$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 256
On-line CPU(s) list: 0-255
Vendor ID: AuthenticAMD
Model name: AMD EPYC 9554 64-Core Processor
CPU family: 25
Model: 17
Thread(s) per core: 2
Core(s) per socket: 64
Socket(s): 2
Stepping: 1
Frequency boost: enabled
CPU max MHz: 3100.0000
CPU min MHz: 1500.0000
BogoMIPS: 6199.89
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_
opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 f
ma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a
misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l
3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_
a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsav
es cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin cppc arat
npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif
v_spec_ctrl avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdp
id overflow_recov succor smca fsrm flush_l1d
Virtualization features:
Virtualization: AMD-V
Caches (sum of all):
L1d: 4 MiB (128 instances)
L1i: 4 MiB (128 instances)
L2: 128 MiB (128 instances)
L3: 512 MiB (16 instances)
NUMA:
NUMA node(s): 2
NUMA node0 CPU(s): 0-63,128-191
NUMA node1 CPU(s): 64-127,192-255
Vulnerabilities:
Gather data sampling: Not affected
Itlb multihit: Not affected
L1tf: Not affected
Mds: Not affected
Meltdown: Not affected
Mmio stale data: Not affected
Reg file data sampling: Not affected
Retbleed: Not affected
Spec rstack overflow: Mitigation; safe RET
Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not aff
ected
Srbds: Not affected
Tsx async abort: Not affected
Models
Dolphin3.0-Llama3.2-1B-f32.gguf
smollm2-135M-base-f32.gguf
I was really hoping this model would work, seeing how it's the one being used in examples/training/README.md
llama3.2-1b-f32.gguf
Problem description & steps to reproduce
[BUILD]:
From the file: docs/build.md34-35
cmake -B build -DCMAKE_BUILD_TYPE=Debug
cmake --build build
[RUN]:
From the file: examples/training/README.md:12-14
./build/bin/llama-finetune --file datasets/wikitext-2-raw/wiki.test.raw -ngl 999 --model models/${model_name}-${quantization}.gguf -c 512 -b 512 -ub 512
I have tried using these models:
Dolphin3.0-Llama3.2-1B-f32.gguf
llama3.2-1b-f32.gguf
smollm2-135M-base-f32.gguf
Has anyone else encountered this issue when trying to run the finetune example as written?
I am trying to run the finetune example as-is following the information given in the docs/build.md
and README.md
and examples/training/README.md
First Bad Commit
some_user@some_hardware:~/dev/some_project/llama.cpp$: git log
commit 2bf9d539dd158345e3a3b096e16474af535265b4 (HEAD -> master, tag: b5754, origin/master, origin/HEAD)
Author: Anton Mitkov <[email protected]>
Date: Wed Jun 25 17:09:55 2025 +0100
sycl: GGML_SYCL_DISABLE_OPT on by default for all Intel Devices (#13973)
Relevant log output
[RESULT]:
some_user@some_hardware:~/dev/some_project/llama.cpp$ ./build/bin/llama-finetune --file datasets/wikitext-2-raw/wiki.test.raw -ngl 999 --model models/${model_name}-${quantization}.gguf -c 512 -b 512 -ub 512
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 CUDA devices:
Device 0: NVIDIA H100 NVL, compute capability 9.0, VMM: yes
Device 1: NVIDIA H100 NVL, compute capability 9.0, VMM: yes
register_backend: registered backend CUDA (2 devices)
register_device: registered device CUDA0 (NVIDIA H100 NVL)
register_device: registered device CUDA1 (NVIDIA H100 NVL)
register_backend: registered backend CPU (1 devices)
register_device: registered device CPU (AMD EPYC 9554 64-Core Processor)
load_backend: failed to find ggml_backend_init in /home/adonay/dev/sentinel/llama.cpp/build/bin/libggml-cuda.so
load_backend: failed to find ggml_backend_init in /home/adonay/dev/sentinel/llama.cpp/build/bin/libggml-cpu.so
main: force disabling memory mapping because it would result in-read-only pointers to the weights
main: force changing k cache type to f32 due to a lack of f16 support for OUT_PROD
main: force changing v cache type to f32 due to a lack of f16 support for OUT_PROD
build: 5754 (2bf9d539) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu (debug)
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA H100 NVL) - 94035 MiB free
llama_model_load_from_file_impl: using device CUDA1 (NVIDIA H100 NVL) - 94805 MiB free
llama_model_loader: loaded meta data with 33 key-value pairs and 147 tensors from models/llama3.2-1b-f32.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Llama 3.2 1b
llama_model_loader: - kv 3: general.organization str = Meta Llama
llama_model_loader: - kv 4: general.basename str = llama-3.2
llama_model_loader: - kv 5: general.size_label str = 1B
llama_model_loader: - kv 6: general.license str = llama3.2
llama_model_loader: - kv 7: general.base_model.count u32 = 1
llama_model_loader: - kv 8: general.base_model.0.name str = Llama 3.2 1B
llama_model_loader: - kv 9: general.base_model.0.organization str = Meta Llama
llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/meta-llama/Lla...
llama_model_loader: - kv 11: general.tags arr[str,2] = ["gguf-connector", "text-generation"]
llama_model_loader: - kv 12: llama.block_count u32 = 16
llama_model_loader: - kv 13: llama.context_length u32 = 131072
llama_model_loader: - kv 14: llama.embedding_length u32 = 2048
llama_model_loader: - kv 15: llama.feed_forward_length u32 = 8192
llama_model_loader: - kv 16: llama.attention.head_count u32 = 32
llama_model_loader: - kv 17: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 18: llama.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 19: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 20: llama.attention.key_length u32 = 64
llama_model_loader: - kv 21: llama.attention.value_length u32 = 64
llama_model_loader: - kv 22: general.file_type u32 = 0
llama_model_loader: - kv 23: llama.vocab_size u32 = 128256
llama_model_loader: - kv 24: llama.rope.dimension_count u32 = 64
llama_model_loader: - kv 25: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 26: tokenizer.ggml.pre str = llama-bpe
llama_model_loader: - kv 27: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 28: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 29: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv 30: tokenizer.ggml.bos_token_id u32 = 128000
llama_model_loader: - kv 31: tokenizer.ggml.eos_token_id u32 = 128001
llama_model_loader: - kv 32: general.quantization_version u32 = 2
llama_model_loader: - type f32: 147 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = all F32
print_info: file size = 4.60 GiB (32.00 BPW)
load: special tokens cache size = 256
load: token to piece cache size = 0.7999 MB
print_info: arch = llama
print_info: vocab_only = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 2048
print_info: n_layer = 16
print_info: n_head = 32
print_info: n_head_kv = 8
print_info: n_rot = 64
print_info: n_swa = 0
print_info: is_swa_any = 0
print_info: n_embd_head_k = 64
print_info: n_embd_head_v = 64
print_info: n_gqa = 4
print_info: n_embd_k_gqa = 512
print_info: n_embd_v_gqa = 512
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 8192
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 0
print_info: rope scaling = linear
print_info: freq_base_train = 500000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 131072
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 1B
print_info: model params = 1.24 B
print_info: general.name = Llama 3.2 1b
print_info: vocab type = BPE
print_info: n_vocab = 128256
print_info: n_merges = 280147
print_info: BOS token = 128000 '<|begin_of_text|>'
print_info: EOS token = 128001 '<|end_of_text|>'
print_info: EOT token = 128009 '<|eot_id|>'
print_info: EOM token = 128008 '<|eom_id|>'
print_info: LF token = 198 'Ċ'
print_info: EOG token = 128001 '<|end_of_text|>'
print_info: EOG token = 128008 '<|eom_id|>'
print_info: EOG token = 128009 '<|eot_id|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = false)
load_tensors: offloading 16 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 17/17 layers to GPU
load_tensors: CUDA_Host model buffer size = 1002.00 MiB
load_tensors: CUDA0 model buffer size = 2088.14 MiB
load_tensors: CUDA1 model buffer size = 2626.12 MiB
..................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 512
llama_context: n_ctx_per_seq = 512
llama_context: n_batch = 512
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 0
llama_context: freq_base = 500000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (512) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context: CUDA_Host output buffer size = 0.49 MiB
llama_kv_cache_unified: CUDA0 KV buffer size = 18.00 MiB
llama_kv_cache_unified: CUDA1 KV buffer size = 14.00 MiB
llama_kv_cache_unified: size = 32.00 MiB ( 512 cells, 16 layers, 1 seqs), K (f32): 16.00 MiB, V (f32): 16.00 MiB
llama_context: pipeline parallelism enabled (n_copies=4)
llama_context: CUDA0 compute buffer size = 68.01 MiB
llama_context: CUDA1 compute buffer size = 290.52 MiB
llama_context: CUDA_Host compute buffer size = 8.02 MiB
llama_context: graph nodes = 582
llama_context: graph splits = 3
common_init_from_params: setting dry_penalty_last_n to ctx_size = 512
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
system_info: n_threads = 128 (n_threads_batch = 128) / 256 | CUDA : ARCHS = 500,610,700,750,800,860,890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
output_reserve: reallocating output buffer from size 0.49 MiB to 250.50 MiB
/home/adonay/dev/sentinel/llama.cpp/ggml/src/ggml-backend.cpp:750: pre-allocated tensor (AdamW step for output_norm.weight) in a buffer (CUDA1) that cannot run the operation (OPT_STEP_ADAMW)
[New LWP 607561]
[New LWP 607562]
[New LWP 607563]
[New LWP 607564]
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
0x00007f54391d242f in __GI___wait4 (pid=607565, stat_loc=0x0, options=0, usage=0x0) at ../sysdeps/unix/sysv/linux/wait4.c:30
30 ../sysdeps/unix/sysv/linux/wait4.c: No such file or directory.
#0 0x00007f54391d242f in __GI___wait4 (pid=607565, stat_loc=0x0, options=0, usage=0x0) at ../sysdeps/unix/sysv/linux/wait4.c:30
30 in ../sysdeps/unix/sysv/linux/wait4.c
#1 0x00007f543975b221 in ggml_print_backtrace () at /home/adonay/dev/sentinel/llama.cpp/ggml/src/ggml.c:199
199 waitpid(child_pid, NULL, 0);
#2 0x00007f543975b351 in ggml_abort (file=0x7f54397d7450 "/home/adonay/dev/sentinel/llama.cpp/ggml/src/ggml-backend.cpp", line=750, fmt=0x7f54397d78a8 "pre-allocated tensor (%s) in a buffer (%s) that cannot run the operation (%s)") at /home/adonay/dev/sentinel/llama.cpp/ggml/src/ggml.c:220
220 ggml_print_backtrace();
#3 0x00007f543977460d in ggml_backend_sched_backend_id_from_cur (sched=0x55f1d1857d60, tensor=0x7f4fe2442a00) at /home/adonay/dev/sentinel/llama.cpp/ggml/src/ggml-backend.cpp:750
750 GGML_ABORT("pre-allocated tensor (%s) in a buffer (%s) that cannot run the operation (%s)", tensor->name, ggml_backend_buffer_name(buffer), ggml_op_name(tensor->op));
#4 0x00007f5439774f81 in ggml_backend_sched_split_graph (sched=0x55f1d1857d60, graph=0x7f4fe203e6d0) at /home/adonay/dev/sentinel/llama.cpp/ggml/src/ggml-backend.cpp:899
899 *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
#5 0x00007f5439778316 in ggml_backend_sched_alloc_graph (sched=0x55f1d1857d60, graph=0x7f4fe203e6d0) at /home/adonay/dev/sentinel/llama.cpp/ggml/src/ggml-backend.cpp:1568
1568 ggml_backend_sched_split_graph(sched, graph);
#6 0x00007f543977d35c in ggml_opt_alloc (opt_ctx=0x55f1da695620, backward=true) at /home/adonay/dev/sentinel/llama.cpp/ggml/src/ggml-opt.cpp:750
750 ggml_backend_sched_alloc_graph(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy);
#7 0x00007f544b15656a in llama_context::opt_epoch_iter (this=0x55f1cfee2fe0, dataset=0x55f1d4cbba50, result=0x55f1da696f40, tokens=std::vector of length 512, capacity 512 = {...}, labels_sparse=std::vector of length 512, capacity 512 = {...}, batch=..., callback=0x7f543977dff9 <ggml_opt_epoch_callback_progress_bar(bool, ggml_opt_context_t, ggml_opt_dataset_t, ggml_opt_result_t, int64_t, int64_t, int64_t)>, train=true, idata_in_loop=0, ndata_in_loop=1070, t_loop_start=161701219169) at /home/adonay/dev/sentinel/llama.cpp/src/llama-context.cpp:2082
2082 ggml_opt_alloc(opt_ctx, train);
#8 0x00007f544b156b2b in llama_context::opt_epoch (this=0x55f1cfee2fe0, dataset=0x55f1d4cbba50, result_train=0x55f1da696f40, result_eval=0x55f1da699bc0, idata_split=1070, callback_train=0x7f543977dff9 <ggml_opt_epoch_callback_progress_bar(bool, ggml_opt_context_t, ggml_opt_dataset_t, ggml_opt_result_t, int64_t, int64_t, int64_t)>, callback_eval=0x7f543977dff9 <ggml_opt_epoch_callback_progress_bar(bool, ggml_opt_context_t, ggml_opt_dataset_t, ggml_opt_result_t, int64_t, int64_t, int64_t)>) at /home/adonay/dev/sentinel/llama.cpp/src/llama-context.cpp:2137
2137 opt_epoch_iter(dataset, result_train, tokens, labels_sparse, batch,
#9 0x00007f544b1586f4 in llama_opt_epoch (ctx=0x55f1cfee2fe0, dataset=0x55f1d4cbba50, result_train=0x55f1da696f40, result_eval=0x55f1da699bc0, idata_split=1070, callback_train=0x7f543977dff9 <ggml_opt_epoch_callback_progress_bar(bool, ggml_opt_context_t, ggml_opt_dataset_t, ggml_opt_result_t, int64_t, int64_t, int64_t)>, callback_eval=0x7f543977dff9 <ggml_opt_epoch_callback_progress_bar(bool, ggml_opt_context_t, ggml_opt_dataset_t, ggml_opt_result_t, int64_t, int64_t, int64_t)>) at /home/adonay/dev/sentinel/llama.cpp/src/llama-context.cpp:2838
2838 ctx->opt_epoch(
#10 0x000055f1aea6abd1 in main (argc=13, argv=0x7ffd172199b8) at /home/adonay/dev/sentinel/llama.cpp/examples/training/finetune.cpp:81
81 llama_opt_epoch(ctx.get(), dataset, result_train, result_eval, idata_split,
[Inferior 1 (process 607560) detached]
Aborted (core dumped)