Skip to content

Eval bug: llama-eval-callback #14537

Closed
@ryan-mangeno

Description

@ryan-mangeno

Name and Version

llama-eval-callback
version: 5770 (b25e927)

Operating systems

Mac

GGML backends

Metal

Hardware

m3 processor

Models

Llama 3 8b instruct, 16 fp, https://huggingface.co/ByteResearch/Llama-3-8B-Instruct then used the hf -> gguf script to get gguf

Problem description & steps to reproduce

./build/bin/llama-eval-callback -m ./models/llama.gguf

First Bad Commit

No response

Relevant log output

build: 5770 (b25e9277) with Apple clang version 17.0.0 (clang-1700.0.13.5) for arm64-apple-darwin24.5.0
llama_model_load_from_file_impl: using device Metal (Apple M3 Pro) - 27647 MiB free
Arch name: llama

llama_model_loader: loaded meta data with 31 key-value pairs and 291 tensors from ./models/lama.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = F59E729Ac709F2Fa41383C7Aa29276538D20Cc37
llama_model_loader: - kv   3:                         general.size_label str              = 8.0B
llama_model_loader: - kv   4:                            general.license str              = other
llama_model_loader: - kv   5:                       general.license.name str              = llama3
llama_model_loader: - kv   6:                       general.license.link str              = LICENSE
llama_model_loader: - kv   7:                               general.tags arr[str,6]       = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv   8:                          general.languages arr[str,1]       = ["en"]
llama_model_loader: - kv   9:                          llama.block_count u32              = 32
llama_model_loader: - kv  10:                       llama.context_length u32              = 8192
llama_model_loader: - kv  11:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv  12:                  llama.feed_forward_length u32              = 14336
llama_model_loader: - kv  13:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv  14:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv  15:                       llama.rope.freq_base f32              = 500000.000000
llama_model_loader: - kv  16:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  17:                 llama.attention.key_length u32              = 128
llama_model_loader: - kv  18:               llama.attention.value_length u32              = 128
llama_model_loader: - kv  19:                          general.file_type u32              = 1
llama_model_loader: - kv  20:                           llama.vocab_size u32              = 128256
llama_model_loader: - kv  21:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  22:               general.quantization_version u32              = 2
llama_model_loader: - kv  23:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  24:                         tokenizer.ggml.pre str              = smaug-bpe
llama_model_loader: - kv  25:                      tokenizer.ggml.tokens arr[str,128256]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  26:                  tokenizer.ggml.token_type arr[i32,128256]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  27:                      tokenizer.ggml.merges arr[str,280147]  = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv  28:                tokenizer.ggml.bos_token_id u32              = 128000
llama_model_loader: - kv  29:                tokenizer.ggml.eos_token_id u32              = 128001
llama_model_loader: - kv  30:                    tokenizer.chat_template str              = {% set loop_messages = messages %}{% ...
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type  f16:  226 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = F16
print_info: file size   = 14.96 GiB (16.00 BPW)
name: general.architecture, value: llama
name: general.type, value: model
name: general.name, value: F59E729Ac709F2Fa41383C7Aa29276538D20Cc37
name: general.size_label, value: 8.0B
name: general.license, value: other
name: general.license.name, value: llama3
name: general.license.link, value: LICENSE
name: llama.block_count, value: 32
name: llama.context_length, value: 8192
name: llama.embedding_length, value: 4096
name: llama.feed_forward_length, value: 14336
name: llama.attention.head_count, value: 32
name: llama.attention.head_count_kv, value: 8
name: llama.rope.freq_base, value: 500000.000000
name: llama.attention.layer_norm_rms_epsilon, value: 0.000010
name: llama.attention.key_length, value: 128
name: llama.attention.value_length, value: 128
name: general.file_type, value: 1
name: llama.vocab_size, value: 128256
name: llama.rope.dimension_count, value: 128
name: general.quantization_version, value: 2
name: tokenizer.ggml.model, value: gpt2
name: tokenizer.ggml.pre, value: smaug-bpe
name: tokenizer.ggml.bos_token_id, value: 128000
name: tokenizer.ggml.eos_token_id, value: 128001
name: tokenizer.chat_template, value: {% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>

'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>

' }}
load: special tokens cache size = 256
load: token to piece cache size = 0.8000 MB
print_info: arch             = llama
print_info: vocab_only       = 0
print_info: n_ctx_train      = 8192
print_info: n_embd           = 4096
print_info: n_layer          = 32
print_info: n_head           = 32
print_info: n_head_kv        = 8
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: is_swa_any       = 0
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 4
print_info: n_embd_k_gqa     = 1024
print_info: n_embd_v_gqa     = 1024
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-05
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 14336
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 0
print_info: rope scaling     = linear
print_info: freq_base_train  = 500000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 8192
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 8B
print_info: model params     = 8.03 B
print_info: general.name     = F59E729Ac709F2Fa41383C7Aa29276538D20Cc37
print_info: vocab type       = BPE
print_info: n_vocab          = 128256
print_info: n_merges         = 280147
print_info: BOS token        = 128000 '<|begin_of_text|>'
print_info: EOS token        = 128001 '<|end_of_text|>'
print_info: EOT token        = 128009 '<|eot_id|>'
print_info: LF token         = 198 'Ċ'
print_info: EOG token        = 128001 '<|end_of_text|>'
print_info: EOG token        = 128009 '<|eot_id|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 32 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 33/33 layers to GPU
load_tensors: Metal_Mapped model buffer size = 14315.02 MiB
load_tensors:   CPU_Mapped model buffer size =  1002.00 MiB
.........................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: freq_base     = 500000.0
llama_context: freq_scale    = 1
llama_context: n_ctx_per_seq (4096) < n_ctx_train (8192) -- the full capacity of the model will not be utilized
ggml_metal_init: allocating
ggml_metal_init: found device: Apple M3 Pro
ggml_metal_init: picking default device: Apple M3 Pro
ggml_metal_load_library: using embedded metal library
ggml_metal_init: GPU name:   Apple M3 Pro
ggml_metal_init: GPU family: MTLGPUFamilyApple9  (1009)
ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
ggml_metal_init: GPU family: MTLGPUFamilyMetal3  (5001)
ggml_metal_init: simdgroup reduction   = true
ggml_metal_init: simdgroup matrix mul. = true
ggml_metal_init: has residency sets    = true
ggml_metal_init: has bfloat            = true
ggml_metal_init: use bfloat            = false
ggml_metal_init: hasUnifiedMemory      = true
ggml_metal_init: recommendedMaxWorkingSetSize  = 28991.03 MB
ggml_metal_init: skipping kernel_get_rows_bf16                     (not supported)
ggml_metal_init: skipping kernel_set_rows_bf16                     (not supported)
ggml_metal_init: skipping kernel_mul_mv_bf16_f32                   (not supported)
ggml_metal_init: skipping kernel_mul_mv_bf16_f32_c4                (not supported)
ggml_metal_init: skipping kernel_mul_mv_bf16_f32_1row              (not supported)
ggml_metal_init: skipping kernel_mul_mv_bf16_f32_l4                (not supported)
ggml_metal_init: skipping kernel_mul_mv_bf16_bf16                  (not supported)
ggml_metal_init: skipping kernel_mul_mv_id_bf16_f32                (not supported)
ggml_metal_init: skipping kernel_mul_mm_bf16_f32                   (not supported)
ggml_metal_init: skipping kernel_mul_mm_id_bf16_f16                (not supported)
ggml_metal_init: skipping kernel_flash_attn_ext_bf16_h64           (not supported)
ggml_metal_init: skipping kernel_flash_attn_ext_bf16_h80           (not supported)
ggml_metal_init: skipping kernel_flash_attn_ext_bf16_h96           (not supported)
ggml_metal_init: skipping kernel_flash_attn_ext_bf16_h112          (not supported)
ggml_metal_init: skipping kernel_flash_attn_ext_bf16_h128          (not supported)
ggml_metal_init: skipping kernel_flash_attn_ext_bf16_h192          (not supported)
ggml_metal_init: skipping kernel_flash_attn_ext_bf16_hk192_hv128   (not supported)
ggml_metal_init: skipping kernel_flash_attn_ext_bf16_h256          (not supported)
ggml_metal_init: skipping kernel_flash_attn_ext_bf16_hk576_hv512   (not supported)
ggml_metal_init: skipping kernel_flash_attn_ext_vec_bf16_h64       (not supported)
ggml_metal_init: skipping kernel_flash_attn_ext_vec_bf16_h96       (not supported)
ggml_metal_init: skipping kernel_flash_attn_ext_vec_bf16_h128      (not supported)
ggml_metal_init: skipping kernel_flash_attn_ext_vec_bf16_h192      (not supported)
ggml_metal_init: skipping kernel_flash_attn_ext_vec_bf16_hk192_hv128 (not supported)
ggml_metal_init: skipping kernel_flash_attn_ext_vec_bf16_h256      (not supported)
ggml_metal_init: skipping kernel_flash_attn_ext_vec_bf16_hk576_hv512 (not supported)
ggml_metal_init: skipping kernel_cpy_f32_bf16                      (not supported)
ggml_metal_init: skipping kernel_cpy_bf16_f32                      (not supported)
ggml_metal_init: skipping kernel_cpy_bf16_bf16                     (not supported)
llama_context:        CPU  output buffer size =     0.49 MiB
llama_kv_cache_unified:      Metal KV buffer size =   512.00 MiB
llama_kv_cache_unified: size =  512.00 MiB (  4096 cells,  32 layers,  1 seqs), K (f16):  256.00 MiB, V (f16):  256.00 MiB
llama_context:      Metal compute buffer size =   296.00 MiB
llama_context:        CPU compute buffer size =    16.01 MiB
llama_context: graph nodes  = 1158
llama_context: graph splits = 2
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096

system_info: n_threads = 6 (n_threads_batch = 6) / 12 | Metal : EMBED_LIBRARY = 1 | CPU : NEON = 1 | ARM_FMA = 1 | FP16_VA = 1 | MATMUL_INT8 = 1 | DOTPROD = 1 | ACCELERATE = 1 | REPACK = 1 |

/Users/ryanmangeno/Documents/dev/ai/gits/llama/llama.cpp/src/llama-context.cpp:881: GGML_ASSERT((!batch_inp.token && batch_inp.embd) || (batch_inp.token && !batch_inp.embd)) failed
(lldb) process attach --pid 53077
Process 53077 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = signal SIGSTOP
    frame #0: 0x0000000197068204 libsystem_kernel.dylib`__wait4 + 8
libsystem_kernel.dylib`__wait4:
->  0x197068204 <+8>:  b.lo   0x197068224    ; <+40>
    0x197068208 <+12>: pacibsp
    0x19706820c <+16>: stp    x29, x30, [sp, #-0x10]!
    0x197068210 <+20>: mov    x29, sp
Target 0: (llama-eval-callback) stopped.
Executable binary set to "/Users/ryanmangeno/Documents/dev/ai/gits/llama/llama.cpp/build/bin/llama-eval-callback".
Architecture set to: arm64-apple-macosx-.
(lldb) bt
* thread #1, queue = 'com.apple.main-thread', stop reason = signal SIGSTOP
  * frame #0: 0x0000000197068204 libsystem_kernel.dylib`__wait4 + 8
    frame #1: 0x0000000102811430 libggml-base.dylib`ggml_abort + 116
    frame #2: 0x0000000102581ef4 libllama.dylib`llama_context::decode(llama_batch const&) + 4184
    frame #3: 0x00000001025856d8 libllama.dylib`llama_decode + 20
    frame #4: 0x00000001020eae60 llama-eval-callback`main + 408
    frame #5: 0x0000000196d02b98 dyld`start + 6076
(lldb) quit

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions