-
Notifications
You must be signed in to change notification settings - Fork 14.3k
Open
Labels
bugSomething isn't workingSomething isn't working
Description
Name and Version
b7255 (works)
b7256 through at least b7552 (broken)
Operating systems
Linux
GGML backends
CUDA
Hardware
9900k/4070
Models
model:
https://huggingface.co/steampunque/MiniCPM-V-4_5-Hybrid-GGUF/blob/main/MiniCPM-V-4_5.Q6_K_H.gguf
mmproj:
https://huggingface.co/steampunque/MiniCPM-V-4_5-Hybrid-GGUF/blob/main/MiniCPM-V-4_5.mmproj.gguf
Problem description & steps to reproduce
Infinite ??? output on b7256 update.
llama-mtmd-cli -m /datahd/models/MiniCPM-V-4_5.Q6_K_H.gguf --mmproj /datahd/models/MiniCPM-V-4_5.mmproj.gguf --image bandwagon_512.png -p "Describe what is shown in the image"
Test image: https://huggingface.co/steampunque/MiniCPM-V-4_5-Hybrid-GGUF/blob/main/bandwagon_512.png
First Bad Commit
Relevant log output
Failing : b7256
Details
llama-mtmd-cli -m /datahd/models/MiniCPM-V-4_5.Q6_K_H.gguf --mmproj /datahd/models/MiniCPM-V-4_5.mmproj.gguf --image bandwagon_512.png -p "Describe what is shown in the image"
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4070, compute capability 8.9, VMM: yes
build: 7256 (2e1c9cd81) with cc (GCC) 11.2.0 for x86_64-slackware-linux
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 4070) (0000:01:00.0) - 11844 MiB free
llama_model_loader: loaded meta data with 27 key-value pairs and 399 tensors from /datahd/models/MiniCPM-V-4_5.Q6_K_H.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen3
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Model
llama_model_loader: - kv 3: general.size_label str = 8.2B
llama_model_loader: - kv 4: qwen3.block_count u32 = 36
llama_model_loader: - kv 5: qwen3.context_length u32 = 40960
llama_model_loader: - kv 6: qwen3.embedding_length u32 = 4096
llama_model_loader: - kv 7: qwen3.feed_forward_length u32 = 12288
llama_model_loader: - kv 8: qwen3.attention.head_count u32 = 32
llama_model_loader: - kv 9: qwen3.attention.head_count_kv u32 = 8
llama_model_loader: - kv 10: qwen3.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 11: qwen3.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 12: qwen3.attention.key_length u32 = 128
llama_model_loader: - kv 13: qwen3.attention.value_length u32 = 128
llama_model_loader: - kv 14: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 15: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 16: tokenizer.ggml.tokens arr[str,151748] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 17: tokenizer.ggml.token_type arr[i32,151748] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 18: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 19: tokenizer.ggml.bos_token_id u32 = 151644
llama_model_loader: - kv 20: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 21: tokenizer.ggml.unknown_token_id u32 = 128244
llama_model_loader: - kv 22: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 23: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 24: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 25: general.quantization_version u32 = 2
llama_model_loader: - kv 26: general.file_type u32 = 18
llama_model_loader: - type f32: 145 tensors
llama_model_loader: - type q8_0: 28 tensors
llama_model_loader: - type q4_K: 20 tensors
llama_model_loader: - type q5_K: 127 tensors
llama_model_loader: - type q6_K: 79 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q6_K
print_info: file size = 5.86 GiB (6.15 BPW)
load: printing all EOG tokens:
load: - 151643 ('<|endoftext|>')
load: - 151645 ('<|im_end|>')
load: - 151662 ('<|fim_pad|>')
load: - 151663 ('<|repo_name|>')
load: - 151664 ('<|file_sep|>')
load: special tokens cache size = 106
load: token to piece cache size = 0.9321 MB
print_info: arch = qwen3
print_info: vocab_only = 0
print_info: n_ctx_train = 40960
print_info: n_embd = 4096
print_info: n_embd_inp = 4096
print_info: n_layer = 36
print_info: n_head = 32
print_info: n_head_kv = 8
print_info: n_rot = 128
print_info: n_swa = 0
print_info: is_swa_any = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 4
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 12288
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: n_expert_groups = 0
print_info: n_group_used = 0
print_info: causal attn = 1
print_info: pooling type = -1
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 40960
print_info: rope_finetuned = unknown
print_info: model type = 8B
print_info: model params = 8.19 B
print_info: general.name = Model
print_info: vocab type = BPE
print_info: n_vocab = 151748
print_info: n_merges = 151387
print_info: BOS token = 151644 '<|im_start|>'
print_info: EOS token = 151645 '<|im_end|>'
print_info: EOT token = 151645 '<|im_end|>'
print_info: UNK token = 128244 '<unk>'
print_info: PAD token = 151643 '<|endoftext|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|endoftext|>'
print_info: EOG token = 151645 '<|im_end|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 36 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 37/37 layers to GPU
load_tensors: CPU_Mapped model buffer size = 486.25 MiB
load_tensors: CUDA0 model buffer size = 5518.65 MiB
......................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 4096
llama_context: n_ctx_seq = 4096
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = auto
llama_context: kv_unified = false
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 1
llama_context: yarn_log_mul = 0
llama_context: n_ctx_seq (4096) < n_ctx_train (40960) -- the full capacity of the model will not be utilized
llama_context: CUDA_Host output buffer size = 0.58 MiB
llama_kv_cache: CUDA0 KV buffer size = 576.00 MiB
llama_kv_cache: size = 576.00 MiB ( 4096 cells, 36 layers, 1/1 seqs), K (f16): 288.00 MiB, V (f16): 288.00 MiB
llama_context: Flash Attention was auto, set to enabled
llama_context: CUDA0 compute buffer size = 304.38 MiB
llama_context: CUDA_Host compute buffer size = 16.01 MiB
llama_context: graph nodes = 1267
llama_context: graph splits = 2
common_init_from_params: added <|endoftext|> logit bias = -inf
common_init_from_params: added <|im_end|> logit bias = -inf
common_init_from_params: added <|fim_pad|> logit bias = -inf
common_init_from_params: added <|repo_name|> logit bias = -inf
common_init_from_params: added <|file_sep|> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
mtmd_cli_context: chat template example:
<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
clip_model_loader: model name:
clip_model_loader: description: image encoder for MiniCPM-V
clip_model_loader: GGUF version: 3
clip_model_loader: alignment: 32
clip_model_loader: n_tensors: 455
clip_model_loader: n_kv: 20
clip_model_loader: has vision encoder
clip_ctx: CLIP using CUDA0 backend
load_hparams: projector: resampler
load_hparams: n_embd: 1152
load_hparams: n_head: 16
load_hparams: n_ff: 4304
load_hparams: n_layer: 27
load_hparams: ffn_op: gelu
load_hparams: projection_dim: 0
--- vision hparams ---
load_hparams: image_size: 448
load_hparams: patch_size: 14
load_hparams: has_llava_proj: 0
load_hparams: minicpmv_version: 5
load_hparams: n_merge: 0
load_hparams: n_wa_pattern: 0
load_hparams: model size: 1044.36 MiB
load_hparams: metadata size: 0.16 MiB
load_tensors: ffn up/down are swapped
warmup: warmup with image size = 448 x 448
alloc_compute_meta: CUDA0 compute buffer size = 62.81 MiB
alloc_compute_meta: CPU compute buffer size = 2.31 MiB
alloc_compute_meta: graph splits = 1, nodes = 893
warmup: flash attention is enabled
main: loading model: /datahd/models/MiniCPM-V-4_5.Q6_K_H.gguf
encoding image slice...
image slice encoded in 117 ms
decoding image batch 1/1, n_tokens_batch = 64
image decoded (batch 1/1) in 9 ms
encoding image slice...
image slice encoded in 51 ms
decoding image batch 1/1, n_tokens_batch = 64
image decoded (batch 1/1) in 7 ms
encoding image slice...
image slice encoded in 49 ms
decoding image batch 1/1, n_tokens_batch = 64
image decoded (batch 1/1) in 7 ms
???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????^C?
llama_perf_context_print: load time = 1715.07 ms
llama_perf_context_print: prompt eval time = 427.76 ms / 214 tokens ( 2.00 ms per token, 500.28 tokens per second)
llama_perf_context_print: eval time = 1801.19 ms / 131 runs ( 13.75 ms per token, 72.73 tokens per second)
llama_perf_context_print: total time = 2984.43 ms / 345 tokens
llama_perf_context_print: graphs reused = 130
Working : b7255
Details
llama-mtmd-cli -m /datahd/models/MiniCPM-V-4_5.Q6_K_H.gguf --mmproj /datahd/models/MiniCPM-V-4_5.mmproj.gguf --image bandwagon_512.png -p "Describe what is shown in the image"
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4070, compute capability 8.9, VMM: yes
build: 7255 (190c4838b) with cc (GCC) 11.2.0 for x86_64-slackware-linux
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 4070) (0000:01:00.0) - 11844 MiB free
llama_model_loader: loaded meta data with 27 key-value pairs and 399 tensors from /datahd/models/MiniCPM-V-4_5.Q6_K_H.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen3
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Model
llama_model_loader: - kv 3: general.size_label str = 8.2B
llama_model_loader: - kv 4: qwen3.block_count u32 = 36
llama_model_loader: - kv 5: qwen3.context_length u32 = 40960
llama_model_loader: - kv 6: qwen3.embedding_length u32 = 4096
llama_model_loader: - kv 7: qwen3.feed_forward_length u32 = 12288
llama_model_loader: - kv 8: qwen3.attention.head_count u32 = 32
llama_model_loader: - kv 9: qwen3.attention.head_count_kv u32 = 8
llama_model_loader: - kv 10: qwen3.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 11: qwen3.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 12: qwen3.attention.key_length u32 = 128
llama_model_loader: - kv 13: qwen3.attention.value_length u32 = 128
llama_model_loader: - kv 14: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 15: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 16: tokenizer.ggml.tokens arr[str,151748] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 17: tokenizer.ggml.token_type arr[i32,151748] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 18: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 19: tokenizer.ggml.bos_token_id u32 = 151644
llama_model_loader: - kv 20: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 21: tokenizer.ggml.unknown_token_id u32 = 128244
llama_model_loader: - kv 22: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 23: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 24: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 25: general.quantization_version u32 = 2
llama_model_loader: - kv 26: general.file_type u32 = 18
llama_model_loader: - type f32: 145 tensors
llama_model_loader: - type q8_0: 28 tensors
llama_model_loader: - type q4_K: 20 tensors
llama_model_loader: - type q5_K: 127 tensors
llama_model_loader: - type q6_K: 79 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q6_K
print_info: file size = 5.86 GiB (6.15 BPW)
load: printing all EOG tokens:
load: - 151643 ('<|endoftext|>')
load: - 151645 ('<|im_end|>')
load: - 151662 ('<|fim_pad|>')
load: - 151663 ('<|repo_name|>')
load: - 151664 ('<|file_sep|>')
load: special tokens cache size = 106
load: token to piece cache size = 0.9321 MB
print_info: arch = qwen3
print_info: vocab_only = 0
print_info: n_ctx_train = 40960
print_info: n_embd = 4096
print_info: n_embd_inp = 4096
print_info: n_layer = 36
print_info: n_head = 32
print_info: n_head_kv = 8
print_info: n_rot = 128
print_info: n_swa = 0
print_info: is_swa_any = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 4
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 12288
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: n_expert_groups = 0
print_info: n_group_used = 0
print_info: causal attn = 1
print_info: pooling type = -1
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 40960
print_info: rope_finetuned = unknown
print_info: model type = 8B
print_info: model params = 8.19 B
print_info: general.name = Model
print_info: vocab type = BPE
print_info: n_vocab = 151748
print_info: n_merges = 151387
print_info: BOS token = 151644 '<|im_start|>'
print_info: EOS token = 151645 '<|im_end|>'
print_info: EOT token = 151645 '<|im_end|>'
print_info: UNK token = 128244 '<unk>'
print_info: PAD token = 151643 '<|endoftext|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|endoftext|>'
print_info: EOG token = 151645 '<|im_end|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 36 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 37/37 layers to GPU
load_tensors: CPU_Mapped model buffer size = 486.25 MiB
load_tensors: CUDA0 model buffer size = 5518.65 MiB
......................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 4096
llama_context: n_ctx_seq = 4096
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = auto
llama_context: kv_unified = false
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 1
llama_context: yarn_log_mul = 0
llama_context: n_ctx_seq (4096) < n_ctx_train (40960) -- the full capacity of the model will not be utilized
llama_context: CUDA_Host output buffer size = 0.58 MiB
llama_kv_cache: CUDA0 KV buffer size = 576.00 MiB
llama_kv_cache: size = 576.00 MiB ( 4096 cells, 36 layers, 1/1 seqs), K (f16): 288.00 MiB, V (f16): 288.00 MiB
llama_context: Flash Attention was auto, set to enabled
llama_context: CUDA0 compute buffer size = 304.38 MiB
llama_context: CUDA_Host compute buffer size = 16.01 MiB
llama_context: graph nodes = 1267
llama_context: graph splits = 2
common_init_from_params: added <|endoftext|> logit bias = -inf
common_init_from_params: added <|im_end|> logit bias = -inf
common_init_from_params: added <|fim_pad|> logit bias = -inf
common_init_from_params: added <|repo_name|> logit bias = -inf
common_init_from_params: added <|file_sep|> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
mtmd_cli_context: chat template example:
<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
clip_model_loader: model name:
clip_model_loader: description: image encoder for MiniCPM-V
clip_model_loader: GGUF version: 3
clip_model_loader: alignment: 32
clip_model_loader: n_tensors: 455
clip_model_loader: n_kv: 20
clip_model_loader: has vision encoder
clip_ctx: CLIP using CUDA0 backend
load_hparams: projector: resampler
load_hparams: n_embd: 1152
load_hparams: n_head: 16
load_hparams: n_ff: 4304
load_hparams: n_layer: 27
load_hparams: ffn_op: gelu
load_hparams: projection_dim: 0
--- vision hparams ---
load_hparams: image_size: 448
load_hparams: patch_size: 14
load_hparams: has_llava_proj: 0
load_hparams: minicpmv_version: 5
load_hparams: n_merge: 0
load_hparams: n_wa_pattern: 0
load_hparams: model size: 1044.36 MiB
load_hparams: metadata size: 0.16 MiB
load_tensors: ffn up/down are swapped
warmup: warmup with image size = 448 x 448
alloc_compute_meta: CUDA0 compute buffer size = 62.81 MiB
alloc_compute_meta: CPU compute buffer size = 2.31 MiB
alloc_compute_meta: graph splits = 1, nodes = 893
warmup: flash attention is enabled
main: loading model: /datahd/models/MiniCPM-V-4_5.Q6_K_H.gguf
encoding image slice...
image slice encoded in 109 ms
decoding image batch 1/1, n_tokens_batch = 64
image decoded (batch 1/1) in 8 ms
encoding image slice...
image slice encoded in 53 ms
decoding image batch 1/1, n_tokens_batch = 64
image decoded (batch 1/1) in 7 ms
encoding image slice...
image slice encoded in 49 ms
decoding image batch 1/1, n_tokens_batch = 64
image decoded (batch 1/1) in 7 ms
<think>
So, let's analyze the image. First, the title is "The Bandwagon" by Claude E. Shannon. It's from "IRE Transactions—Information Theory". The layout is a two-column text page. The content is about information theory, discussing its development, applications, and the concept of a "bandwagon" effect. The text mentions how information theory has become a scientific bandwagon, starting as a technical tool for communication engineers, then expanding into psychology, biology, economics, etc. It talks about the importance of scientific rigor and avoiding the bandwagon effect, emphasizing that information theory is a branch of mathematics with strict deductive methods. Also, there's mention of Claude Shannon's work and the need for scientific standards in the field.
</think>
The image shows a two-column text page from a publication titled *The Bandwagon* by Claude E. Shannon, featured in *IRE Transactions—Information Theory*. The content discusses the evolution of information theory, describing it as a “scientific bandwagon” that originated as a technical tool for communication engineers but expanded into diverse fields like psychology, biology, economics, and sociology. It emphasizes the importance of maintaining scientific rigor and avoiding the “bandwagon effect” (where ideas gain popularity without solid foundation). The text also highlights Claude Shannon’s contributions and the need for strict deductive methods in information theory, contrasting it with less rigorous approaches in other fields. Decorative elements (like flourishes) frame the text, and the page number “1088” appears at the top.
llama_perf_context_print: load time = 1707.29 ms
llama_perf_context_print: prompt eval time = 417.95 ms / 214 tokens ( 1.95 ms per token, 512.02 tokens per second)
llama_perf_context_print: eval time = 4262.59 ms / 310 runs ( 13.75 ms per token, 72.73 tokens per second)
llama_perf_context_print: total time = 5501.85 ms / 524 tokens
llama_perf_context_print: graphs reused = 307
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working