-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path06a_plot_data.R
68 lines (53 loc) · 2.37 KB
/
06a_plot_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Notes -------------------------------------------------------------------
# Plot distribution of each severity item and (o)SCORAD
# Initialisation ----------------------------------------------------------
rm(list = ls()) # Clear Workspace (better to restart the session)
source(here::here("analysis", "00_init.R"))
#### OPTIONS
dataset <- "PFDC"
####
dataset <- match.arg(dataset, c("Derexyl", "PFDC"))
sev_dict <- detail_POSCORAD(c("Items", "Scores"))
df <- load_dataset(dataset)
# Plot --------------------------------------------------------------------
pl <- lapply(1:nrow(sev_dict),
function(i) {
symp <- as.character(sev_dict$Name[i])
lbl <- as.character(sev_dict$Label[i])
if (symp %in% detail_POSCORAD("Intensity signs")$Name) {
p <- table(na.omit(factor(df[[lbl]], levels = 0:sev_dict$Maximum[i])))
N <- sum(p)
p <- p / N
out <- data.frame(p) %>%
ggplot(aes(x = Var1, y = Freq)) +
geom_col() +
scale_y_continuous(limits = c(0, 1), expand = c(0, 0)) +
labs(y = "Frequency", x = "", title = lbl) +
theme_bw(base_size = 15)
} else {
out <- df %>%
select(all_of(lbl)) %>%
drop_na() %>%
rename(x = all_of(lbl)) %>%
ggplot(aes(x = x)) +
geom_histogram(aes(y = stat(count) / sum(count)), bins = 30) +
scale_x_continuous(limits = c(0, sev_dict$Maximum[i])) +
scale_y_continuous(limits = c(0, .25), expand = c(0, 0)) +
labs(y = "Frequency", x = "", title = lbl) +
theme_bw(base_size = 15)
}
return(out)
})
title <- case_when(dataset == "Derexyl" ~ "Dataset 1",
dataset == "PFDC" ~ "Dataset 2")
plot_title <- ggdraw() +
draw_label(title,
fontface = "bold",
size = 20,
x = .5,
hjust = 0) +
theme(plot.margin = margin(0, 0, 0, 7))
plot_grid(plot_title,
plot_grid(plotlist = pl, ncol = 3),
ncol = 1, rel_heights = c(.05, .95))
# ggsave(here("results", paste0("distribution_", dataset, ".jpg")), width = 13, height = 8, units = "cm", dpi = 300, scale = 3)