-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path07_plot_fit.R
186 lines (153 loc) · 7.13 KB
/
07_plot_fit.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Notes -------------------------------------------------------------------
# Plot calibration estimates and plot SCORAD
# Initialisation ----------------------------------------------------------
rm(list = ls()) # Clear Workspace (better to restart the session)
source(here::here("analysis", "00_init.R"))
#### OPTIONS
pid <- 3
####
model <- ScoradPred(independent_items = FALSE,
a0 = .04,
include_trend = FALSE,
include_calibration = TRUE,
include_treatment = TRUE,
treatment_names = c("localTreatment", "emollientCream"),
include_recommendations = FALSE)
file_dict <- get_results_files(outcome = "SCORAD",
model = model$name,
dataset = "PFDC",
root_dir = here())
# Load data ---------------------------------------------------------------
l <- load_PFDC()
POSCORAD <- l$POSCORAD %>%
rename(Time = Day)
df <- POSCORAD %>%
select(one_of("Patient", "Time", model$item_spec$Label)) %>%
pivot_longer(cols = all_of(model$item_spec$Label), names_to = "Label", values_to = "Score") %>%
drop_na() %>%
left_join(model$item_spec[, c("Label", "ItemID")], by = c("Label"))
# Prepare SCORAD calibration data
if (model$include_calibration) {
cal <- scorad <- l$SCORAD %>%
rename(Time = Day) %>%
select(one_of("Patient", "Time", model$item_spec$Label)) %>%
pivot_longer(cols = all_of(model$item_spec$Label), names_to = "Label", values_to = "Score") %>%
drop_na() %>%
left_join(model$item_spec[, c("Label", "ItemID")], by = c("Label"))
} else {
cal <- NULL
}
# Prepare treatment data
treatment_lbl <- paste0(model$treatment_names, "WithinThePast2Days")
if (model$include_treatment) {
treat <- POSCORAD %>%
select(all_of(c("Patient", "Time", treatment_lbl))) %>%
pivot_longer(cols = all_of(treatment_lbl), names_to = "Treatment", values_to = "UsageWithinThePast2Days") %>%
mutate(Treatment = vapply(Treatment, function(x) {which(x == treatment_lbl)}, numeric(1)) %>% as.numeric()) %>%
drop_na()
} else {
treat <- NULL
}
# NB: assume no recommendation (at least outside time-series)
pt <- unique(df[["Patient"]])
id <- get_index(bind_rows(df, cal, treat))
df <- left_join(df, id, by = c("Patient", "Time"))
# Results
fit <- readRDS(file_dict$Fit)
par <- readRDS(file_dict$FitPar)
# Correlation plot --------------------------------------------------------
x <- "Omega"
omg <- rstan::extract(fit, pars = x)[[1]]
tmp <- list(Mean = apply(omg, c(2, 3), mean),
SD = apply(omg, c(2, 3), sd),
Lower = apply(omg, c(2, 3), function(x) {quantile(x, probs = .05)}),
Upper = apply(omg, c(2, 3), function(x) {quantile(x, probs = .95)}),
pval = apply(omg, c(2, 3), function(x) {empirical_pval(x, 0)}))
tmp <- lapply(tmp,
function(x) {
colnames(x) <- model$item_spec$Name
rownames(x) <- model$item_spec$Name
return(x)
})
jpeg(here("results", paste0(x, "_", model$name, ".jpeg")),
width = 20, height = 20, units = "cm", res = 300, quality = 95, pointsize = 11)
corrplot::corrplot.mixed(tmp$Mean, lower = "number", upper = "ellipse")
dev.off()
# Combine with power prior plot in `plot_powerprior.R`
# Calibration plot --------------------------------------------------------------------
# Estimates
p1_cal <- par %>%
filter(Variable == "bias0") %>%
rename(ItemID = Index) %>%
left_join(model$item_spec, by = "ItemID") %>%
filter(!(Name %in% c("sleep", "itching"))) %>%
mutate(Name = factor(Name),
Name = factor(Name, levels = rev(levels(Name)))) %>%
ggplot(aes(x = Name, y = Mean, ymin = `5%`, ymax = `95%`)) +
facet_grid(rows = vars(Component), scales = "free", space = "free") +
geom_pointrange() +
geom_hline(yintercept = 0, linetype = "dashed") +
coord_flip() +
scale_y_continuous(limits = c(-.5, .5),
breaks = c(-.5, -.25, 0, .25, 0.5),
labels = c("-0.5\nPatient scores\nhigher than clinician",
-0.25, 0, 0.25,
"0.5\nClinician scores\n higher than patient")) +
labs(x = "",
y = "Initial bias (normalised)")
# Otherwise, post-process figures to give the interpretation of the direction of the effect
# ("patient scores higher than clinician" vs "clinician scores higher than patient")
aggcal <- rstan::extract(fit, pars = "agg_cal_rep")[[1]]
aggcal <- aggcal[, , 4] # SCORAD
### Plot observed PO-SCORAD and inferred SCORAD as a fanchart
tmp <- POSCORAD %>%
filter(Patient == pid)
p2_cal <- plot_post_traj_fanchart(aggcal,
id = id,
patient_id = pid,
legend_fill = "discrete",
CI_level = seq(0.1, 0.9, 0.2),
max_score = 60) +
add_broken_pointline(tmp, aes_x = "Time", aes_y = "SCORAD", colour = "Observed\nPO-SCORAD") +
scale_colour_manual(values = c("Observed\nPO-SCORAD" = "black")) +
labs(fill = "Inferred\nSCORAD\nprobabilities", colour = "") +
theme(legend.position = c(.9, .8),
legend.title = element_text(size = 11),
legend.spacing.y = unit(0, 'cm'))
plot_grid(p1_cal, p2_cal, nrow = 1, labels = "AUTO")
if (FALSE) {
ggsave(here("results", "plot_calibration.jpg"),
width = 18, height = 7, units = "cm", dpi = 300, scale = 2.5)
}
# Treatment ---------------------------------------------------------------
p_treat <- extract_par_indexes(par, var_name = "ATE", dim_names = c("ItemID", "Treatment")) %>%
filter(Variable == "ATE") %>%
mutate(Treatment = model$treatment_names[Treatment]) %>%
left_join(model$item_spec, by = "ItemID") %>%
mutate(Treatment = recode(Treatment,
emollientCream = "Emollient Cream",
localTreatment = "Topical Corticosteroids"),
Component = gsub(" ", "\n", Component),
Name = factor(Name),
Name = factor(Name, levels = rev(levels(Name)))) %>%
ggplot(aes(x = Name, y = Mean, ymin = `5%`, ymax = `95%`, colour = Treatment)) +
facet_grid(rows = vars(Component), scale = "free", space = "free") +
geom_pointrange(position = position_dodge(width = .5)) +
geom_hline(yintercept = 0, linetype = "dashed") +
coord_flip() +
scale_y_continuous(limits = c(-.05, .05),
breaks = c(-.05, -.025, 0, .025, 0.05),
labels = c("-0.05\nTreatment\nreduces severity", -0.025, 0, 0.025, "0.5\nTreatment\nincreases severity")) +
scale_colour_manual(values = cbbPalette[c(2, 1)]) +
labs(x = "", y = "Treatment effect (normalised)", colour = "") +
theme(legend.position = "top")
p_treat
# ggsave(here("results", "treatment_effects.jpg"), width = 13, height = 8, units = "cm", scale = 2)
# Combine with recommendation plot
p_rec <- readRDS(here("results", "subplot_recommendation.rds")) +
labs(title = "")
plot_grid(p_treat, p_rec, nrow = 1, labels = "AUTO")
if (FALSE) {
ggsave(here("results", "plot_treatment.jpg"),
width = 10, height = 5, units = "cm", dpi = 300, scale = 3.5)
}