-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFullModel.stan
320 lines (282 loc) · 11.3 KB
/
FullModel.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
// Ordered Logistic Multivariate Random Walk model for all items of SCORAD
// - Measurement error by ordered logistic distribution
// - Latent dynamic by multivariate normal random walk
// - Power prior
// - Calibration
// - Treatment effects
// Optional:
// - Population trend (no damping)
functions {
#include /include/functions_OrderedRW.stan
#include /include/get_ragged_bounds.stan
#include /include/get_ts_length.stan
}
data {
int<lower = 0> N_pt; // Number of patients
// Distributions
int<lower = 2> M1; // Upper bound of observations
int<lower = 1> D1; // Number of signs
int<lower = 2> M2; // Upper bound of observations
int<lower = 1> D2; // Number of signs
int<lower = 1, upper = 2> distribution_id[D1 + D2]; // Indicating whether the d-th item use M1 or M2
// Training
int<lower = 0> N_obs; // Number of non-missing observations
int<lower = 1, upper = N_pt> k_obs[N_obs]; // Patient index
int<lower = 1> t_obs[N_obs]; // Time of observation (from 1 to t_max)
int<lower = 1, upper = D1 + D2> d_obs[N_obs]; // Sign index
int<lower = 0> y_obs[N_obs]; // Observations
// Testing
int<lower = 0> N_test; // Number of predictions to evaluate
int<lower = 1, upper = N_pt> k_test[N_test]; // Patient index
int<lower = 1> t_test[N_test]; // Time of prediction
int<lower = 1, upper = D1 + D2> d_test[N_test]; // Sign index
int<lower = 0> y_test[N_test]; // True value
// Options
int<lower = 0, upper = 1> run; // Switch to evaluate the likelihood
int<lower = 0, upper = 1> independent_items; // Whether to have diagonal correlation matrices or not
int<lower = 0, upper = 1> trend_known; // Whether to the trend smoothing parameter is known or not
vector<lower = 0, upper = 1>[D1 + D2] beta_data[trend_known]; // Smoothing parameter
int<lower = 0> N_agg; // Number of aggregates to compute
matrix[D1 + D2, N_agg] agg_weights; // Weights of each item in the aggregate
#include /include/data_powerprior.stan
#include /include/data_calibration.stan
#include /include/data_dailytreat.stan
// Priors
vector<lower = 0>[M1 - 1] prior_delta1[D1];
vector<lower = 0>[M2 - 1] prior_delta2[D2];
vector[D1 + D2] prior_sigma_meas[2];
vector[D1 + D2] prior_sigma_lat[2];
real prior_Omega;
real prior_Omega0;
vector[D1 + D2] prior_mu_y0[2];
vector<lower = 0>[D1 + D2] prior_sigma_y0[2];
real prior_ATE[D1 + D2, 2];
vector<lower = 0>[D1 + D2] prior_beta[2];
// Recommendations
int<lower = 0> N_rec; // Number of recommendations
int<lower = 1, upper = N_pt> k_rec[N_rec]; // Patient for which we make the recommendation
int<lower = 1> t_rec[N_rec]; // Time at which we make the recommendation (prediction at t + 1)
int<lower = 0> N_actions; // Number of actions to investigate
matrix[N_actions, D_treat] actions; // Actions
}
transformed data {
// Dealing with two measurements distribution
int D = D1 + D2; // Total number of items
int M[D]; // Maximum for all items
int size_ct = D1 * M1 + D2 * M2; // Size of ragged ct array
int id_ct[D, 2]; // Index of the first and last values of ct
int d_sub[D]; // Index of d in sub-arrays corresponding of size D1 or D2
// Dealing with ragged time-series
int t_max[N_pt] = get_ts_length(
append_array(append_array(append_array(append_array(k_obs, k_test), k_cal), k_treat2), k_rec),
append_array(append_array(append_array(append_array(t_obs, t_test), t_cal), t_treat2), t_rec)
); // Length of each time series
int N = sum(t_max); // Total number of observations
int id_ts[N_pt, 2] = get_ragged_bounds(t_max); // Index of first and last observation of each patient time-series
int idx_obs[N_obs]; // index of non-missing observations
int idx_test[N_test]; // index of predictions
int idx_rec[N_rec]; // index of recommendations
int yc_obs[N_obs]; // Categorical y_obs
#include /include/tdata_decl_calibration.stan
#include /include/tdata_decl_dailytreat.stan
// Dealing with two measurement distributions
for (d in 1:D) {
{
int i1 = 1;
int i2 = 1;
if (distribution_id[d] == 1) {
M[d] = M1;
d_sub[d] = i1;
i1 += 1;
} else {
M[d] = M2;
d_sub[d] = i2;
i2 += 1;
}
}
}
id_ct = get_ragged_bounds(M);
// Dealing with ragged time-series
for (i in 1:N_obs) {
idx_obs[i] = id_ts[k_obs[i], 1] - 1 + t_obs[i];
}
for (i in 1:N_test) {
idx_test[i] = id_ts[k_test[i], 1] - 1 + t_test[i];
}
for (i in 1:N_rec) {
idx_rec[i] = id_ts[k_rec[i], 1] - 1 + t_rec[i];
}
// Categorical y
for (i in 1:N_obs) {
yc_obs[i] = y_obs[i] + 1;
}
#include /include/tdata_state_dailytreat.stan
#include /include/tdata_state_calibration.stan
}
parameters {
// Latent dynamic
vector[D] eta[N]; // Error term, non-centered parametrisation
cholesky_factor_corr[D] L_param; // Cholesky decomposition of correlation matrix
vector<lower = 0>[D] sigma_lat; // Vector of standard deviation
// Measurement distribution
vector<lower = 0>[D] sigma_meas; // Equivalent standard deviation (not scale) of logistic distribution
simplex[M1 - 1] delta1[D1]; // Difference between relative cutpoints
simplex[M2 - 1] delta2[D2]; // Difference between relative cutpoints
// Initial condition
cholesky_factor_corr[D] L0_param; // Cholesky decomposition of initial condition correlation matrix
vector[D] mu_y0; // Population mean y_lat at t0
vector<lower = 0>[D] sigma_y0; // Population standard deviation of y_lat at t0
// Treatment effect
matrix[D, D_treat] ATE; // Average treatment effect (in percentage of score)
// Trend
vector<lower = 0, upper = 1>[D] beta_param[1 - trend_known];
#include /include/parameters_calibration.stan
#include /include/parameters_dailytreat.stan
}
transformed parameters {
// Latent dynamic and measurement distribution
matrix[D, D] L;
matrix[D, D] L0;
vector[D] s = sigma_meas * sqrt(3) / pi(); // scale of measurement distribution
vector[M1] ct1[D1]; // Cutpoints in [0, M] space
vector[M2] ct2[D2]; // Cutpoints in [0, M] space
vector[size_ct] ct; // ct1 and ct2 concatenated
vector[size_ct] z_ct; // Cutpoints in affinity space
vector[D] y_lat[N]; // Latent score
vector[D] z_lat[N]; // Latent score in affinity space
vector[D] y0[N_pt]; // Initial latent score
// Treatment effect
matrix[D, D_treat] ATE_abs = ATE .* rep_matrix(to_vector(M), D_treat); // Average treatment effect (in units of the score)
// Trend
vector[D] trend[N]; // Trend
vector[D] beta; // Smoothing parameter for the trend
#include /include/tparameters_decl_calibration.stan
#include /include/tparameters_decl_dailytreat.stan
if (independent_items == 0) {
L = L_param;
L0 = L0_param;
} else {
L = diag_matrix(rep_vector(1, D));
L0 = diag_matrix(rep_vector(1, D));
}
// Cutpoints
for (d in 1:D1) {
ct1[d] = make_ct(delta1[d]);
}
for (d in 1:D2) {
ct2[d] = make_ct(delta2[d]);
}
for (d in 1:D) {
if (distribution_id[d] == 1) {
ct[id_ct[d, 1]:id_ct[d, 2]] = ct1[d_sub[d]];
} else {
ct[id_ct[d, 1]:id_ct[d, 2]] = ct2[d_sub[d]];
}
z_ct[id_ct[d, 1]:id_ct[d, 2]] = ct[id_ct[d, 1]:id_ct[d, 2]] / s[d];
}
#include /include/tparameters_state_calibration.stan
#include /include/tparameters_state_dailytreat.stan
// Trend
if (trend_known) {
beta = beta_data[1];
} else {
beta = beta_param[1];
}
// Latent dynamic
for (k in 1:N_pt) {
y0[k] = mu_y0 + sigma_y0 .* (L0 * eta[id_ts[k, 1]]);
y_lat[id_ts[k, 1]] = y0[k];
trend[id_ts[k, 1]] = rep_vector(0, D);
for (t in (id_ts[k, 1] + 1):id_ts[k, 2]) {
y_lat[t] = y_lat[t - 1] + trend[t - 1] + ATE_abs * p_treat[t - 1] + sigma_lat .* (L * eta[t]); // Multivariate Random walk
trend[t] = beta .* (y_lat[t] - y_lat[t - 1]) + (1 - beta) .* trend[t - 1];
}
}
for (i in 1:N) {
z_lat[i] = y_lat[i] ./ s;
}
}
model {
#include /include/model_dailytreat.stan
#include /include/model_calibration.stan
for (i in 1:N) {
eta[i] ~ std_normal();
}
// Priors
// NB: technically the prior should be raised to the power 1-a0 since the power prior is on likelihood and not the posterior
// But given approximations, weakly informative priors and a0<<1, I don't think it really matters
L ~ lkj_corr_cholesky(prior_Omega); // LKJ prior for correlation matrix
L0 ~ lkj_corr_cholesky(prior_Omega0); // LKJ prior for correlation matrix
for (d in 1:D1) {
delta1[d] ~ dirichlet(prior_delta1[d]);
}
for (d in 1:D2) {
delta2[d] ~ dirichlet(prior_delta2[d]);
}
sigma_meas ./ to_vector(M) ~ lognormal(prior_sigma_meas[1], prior_sigma_meas[2]);
sigma_lat ./ to_vector(M) ~ lognormal(prior_sigma_lat[1], prior_sigma_lat[2]);
mu_y0 ./ to_vector(M) ~ normal(prior_mu_y0[1], prior_mu_y0[2]);
sigma_y0 ./ to_vector(M) ~ normal(prior_sigma_y0[1], prior_sigma_y0[2]);
// Priors treatment
for (d in 1:D) {
ATE[d] ~ normal(prior_ATE[d, 1], prior_ATE[d, 2]);
}
// Prior trend
if (!trend_known) {
beta_param[1] ~ beta(prior_beta[1], prior_beta[2]);
}
// Power prior
#include /include/model_powerprior.stan
if (run == 1) {
// Measurement
for (i in 1:N_obs) {
yc_obs[i] ~ ordered_logistic(z_lat[idx_obs[i]][d_obs[i]], segment(z_ct, id_ct[d_obs[i], 1], M[d_obs[i]]));
}
}
}
generated quantities {
#include /include/gq_decl_dailytreat.stan
#include /include/gq_decl_calibration.stan
// Additional parameters
matrix[D, D] Omega = multiply_lower_tri_self_transpose(L); // Correlation matrix
matrix[D, D] Sigma_lat = quad_form_diag(Omega, sigma_lat); // Covariance matrix
matrix[D, D] Omega0 = multiply_lower_tri_self_transpose(L0); // Correlation matrix of initial condition
vector[D] sigma_tot = sqrt(square(sigma_meas) + square(sigma_lat)); // Total noise std for one-step-ahead prediction
vector[D] sigma_reltot = sigma_tot ./ to_vector(M); // Normalised sigma_tot
vector[D] rho2 = square(sigma_meas ./ sigma_tot); // Proportion of measurement noise in total noise
matrix[N_agg, D_treat] ATE_agg = agg_weights' * ATE_abs; // ATE for aggregates
// Replications of the scores
matrix[N, D] y_rep; // Replications (of the entire time-series, not just observations)
matrix[N, N_agg] agg_rep; // Replications of aggregates
// Predictions
real lpd[N_test]; // Log predictive density of predictions
real y_pred[N_test]; // Predictive sample of y_test
// Recommendations
matrix[N_rec, D] y_rec[N_actions];
matrix[N_rec, N_agg] agg_rec[N_actions];
#include /include/gq_state_dailytreat.stan
#include /include/gq_state_calibration.stan
// Replications of the scores
for (i in 1:N) {
for (d in 1:D) {
y_rep[i, d] = ordered_logistic_rng(z_lat[i][d], segment(z_ct, id_ct[d, 1], M[d])) - 1;
}
}
agg_rep = y_rep * agg_weights;
// Predictions
for (i in 1:N_test) {
y_pred[i] = y_rep[idx_test[i], d_test[i]];
lpd[i] = ordered_logistic_lpmf(y_test[i] + 1 | z_lat[idx_test[i]][d_test[i]], segment(z_ct, id_ct[d_test[i], 1], M[d_test[i]]));
}
// Recommendations
for (a in 1:N_actions) {
for (i in 1:N_rec) {
y_rec[a][i] = multi_normal_cholesky_rng(y_lat[idx_rec[i]] + trend[idx_rec[i]] + ATE_abs * actions[a]', diag_matrix(sigma_lat) * L)'; // Linear predictor
y_rec[a][i] = y_rec[a][i] ./ s';
for (d in 1:D) {
y_rec[a][i][d] = ordered_logistic_rng(y_rec[a][i][d], segment(z_ct, id_ct[d, 1], M[d])) - 1; // Measurement
}
}
agg_rec[a] = y_rec[a] * agg_weights;
}
}