Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CUDA error #83

Open
JIBSN opened this issue Jan 27, 2022 · 2 comments
Open

CUDA error #83

JIBSN opened this issue Jan 27, 2022 · 2 comments
Assignees

Comments

@JIBSN
Copy link

JIBSN commented Jan 27, 2022

/tmp/libmolgrid/src/grid_maker.cu:279: invalid argument

CLI error
2022-01-27 12:32:12.810627: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2022-01-27 12:32:12.810659: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0 1 2 3 4 5 6 7 8 9
2022-01-27 12:32:12.810665: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N N N N N N N N N N
2022-01-27 12:32:12.810667: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 1: N N N N N N N N N N
2022-01-27 12:32:12.810670: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 2: N N N N N N N N N N
2022-01-27 12:32:12.810672: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 3: N N N N N N N N N N
2022-01-27 12:32:12.810675: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 4: N N N N N N N N N N
2022-01-27 12:32:12.810677: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 5: N N N N N N N N N N
2022-01-27 12:32:12.810680: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 6: N N N N N N N N N N
2022-01-27 12:32:12.810682: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 7: N N N N N N N N N N
2022-01-27 12:32:12.810684: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 8: N N N N N N N N N N
2022-01-27 12:32:12.810687: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 9: N N N N N N N N N N
2022-01-27 12:32:12.822802: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:0 with 8811 MB memory) -> physical GPU (device: 0, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:1a:00.0, compute capability: 8.6)
2022-01-27 12:32:12.825625: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:1 with 8503 MB memory) -> physical GPU (device: 1, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:1b:00.0, compute capability: 8.6)
2022-01-27 12:32:12.828273: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:2 with 9012 MB memory) -> physical GPU (device: 2, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:1c:00.0, compute capability: 8.6)
2022-01-27 12:32:12.830885: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:3 with 9012 MB memory) -> physical GPU (device: 3, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:1d:00.0, compute capability: 8.6)
2022-01-27 12:32:12.833468: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:4 with 9012 MB memory) -> physical GPU (device: 4, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:1e:00.0, compute capability: 8.6)
2022-01-27 12:32:12.836048: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:5 with 9012 MB memory) -> physical GPU (device: 5, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:3d:00.0, compute capability: 8.6)
2022-01-27 12:32:12.838643: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:6 with 9012 MB memory) -> physical GPU (device: 6, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:3e:00.0, compute capability: 8.6)
2022-01-27 12:32:12.841233: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:7 with 9012 MB memory) -> physical GPU (device: 7, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:3f:00.0, compute capability: 8.6)
2022-01-27 12:32:12.843835: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:8 with 9012 MB memory) -> physical GPU (device: 8, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:40:00.0, compute capability: 8.6)
2022-01-27 12:32:12.846432: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device: GPU:9 with 9012 MB memory) -> physical GPU (device: 9, name: NVIDIA GeForce RTX 3080, pci bus id: 0000:41:00.0, compute capability: 8.6)
2022-01-27 12:32:12.850270: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x5623d422fef0 initialized for platform CUDA (this does not g uarantee that XLA will be used). Devices:
2022-01-27 12:32:12.850310: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850323: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (1): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850332: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (2): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850340: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (3): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850347: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (4): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850355: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (5): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850364: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (6): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850372: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (7): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850379: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (8): NVIDIA GeForce RTX 3080, Compute Capability 8.6
2022-01-27 12:32:12.850387: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (9): NVIDIA GeForce RTX 3080, Compute Capability 8.6
[I 2022-01-27 12:33:10.380 ServerApp] Saving file at /Untitled.ipynb
/tmp/libmolgrid/src/grid_maker.cu:279: invalid argument[I 2022-01-27 13:13:14.314 ServerApp] Saving file at /Untitled3.ipynb
/tmp/libmolgrid/src/grid_maker.cu:288: no kernel image is available for execution on the device

I have installed molgrid 0.2.1 with conda, but when I ran a the train_basic_CNN_with_Tensorflow script, there's an error occured. What does the error about?

@dkoes
Copy link
Contributor

dkoes commented Feb 8, 2022

You need a build with support for newer GPUs. Try building from source until we have an updated conda package.

@JIBSN
Copy link
Author

JIBSN commented Feb 10, 2022

Thanks for your advise, I'll try to build from source.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants